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PREFACE

Ttis Memorandum is the result of a study carried out at RAND dur-

ing the summer of 1965. The objective was two-fold: to assess the ef-

ficacy of the theory existing at that time, and to brief RAND personnel

on a branch of fluid mechanics which is ordinarily overlooked in texts

and graduate curricula. A short series of lectures accompanied the de-

velopment of this Memorandum. The response to this indicated that pub-

lication of this Memorandum would be worthwhile as part of a continuing

RAND program, under U.S. Air Force Project RAND, of surveying the state

of the art in aerodynamics.

A framework for the description of three-dimensional flow fields

is a requisite for the rational analysis and design of aerodynamic sys-

tems. This Memorandum focuses on one topic in this general area, three-

dimensional boundary layer phenomena, and introduces the concepts and

techniques of this subject to those workers in aerodynamics and fluid

mechanics who are not yet actively engaged in its study.

The author is a professor in the Division of Aeronautical Sciences

at the University of California, Berkeley, and a consultant to The RND

Corporation.
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StMh2ARY

The basic concept of a three-dimensional boundary layer is re-

viewed from both physical and mathematical viewpoints. Particular em-

phasis is placed on the various causes of secondary flow, with geodesic

curvatuxe of the surface streamlines of inviscid flow receiving the

most detailed consideration. Various exact solutions for steady, in-

compressible laminar flow are reviewed and a proposal for a finite-

difference scheme for arbitrary inviscid flows and surface conditions

is sketched (but not developed and tested). The momentum-integral

method and other approximation schemes are briefly discussed.

Compressibility effects are discussed qualitatively, and then at-

tention is turned to the stability of laminar flows and the transition

to turbulence.

The equations for time-averaged turbulent flow are derived and

criticized, both in differential and integral form. We review the two-

dimensional case as a reminder of the essential difficulty of indeter-

minacy, and then critically examine existing empirically-based models

of the three-dimensional turbulent boundary layer. No attempt is made

to review existing methods of computing the development of turbulent

layers.

We conclude with suggestions for further study, most of which seem

as interesting today as they did in 1965.

I
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SYMBOLS

All symbols are defined where they appear in the text, and many

appear in only one section of the Memorandum. Some symbols are used

with more than one meaning when their appearances are well separated

in space and context, and confusion seems unlikely.

The symbols which recur throughout the text are listed below.

Independent Variables and Given Parameters

1,1 = coordinates of an orthogonal mesh covering the body. De-

fined in dimensions of length

S= distance normal to the body

hilh = metric coefficients for § and 71 (dimensionless)

X, = geodesic curvature of the coordinate curve, 1 = constant,
-1on the body (length -1

= geodesic curvature of = constant curve (length-1

w= angular velocity of reference frame relative to inertial

space; wl' t2o w3 are its 1-, 1-, and C-components

R distance from the point (",11,C) to the axis of reference

frame rotation

L = a characteristic body length

U, V = §- and 1-components of velocity at the wall in inviscid flow

p = pressure, predetermined by the inviscid flow

A = potential of a conservative body force

P = density, assumed constant except in Section XI

2 2
P = abbreviation for p + p(A - (o R /2)

= viscosity, assumed constant except in Section XI

V = kinematic viscosity, assumed constant except in Section XI

x,y,z = dimensionless, and in the case of z, stretched, versions of

, , defined on page 1.

m,n,r,s = dimensionless pressure-gradient parameters defined on pages

13 and 14

J~- ---- -
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) , ). = dimensioniess coordinate-curvature parameters (proportional

to 21 I respectively), defined on page 14

Dependent Variables

-1,v-, -, C-components of velocity in the boundary layer

t g = dimensionless velocity components f' = u/U, g = v/V

I G = dimensionless v-velocity in intrinsic coordinate system,

G' u/U

* vorticity vector, with -, '-, and C-components " -2' 3

T surface shear stress (skin friction vector), with - and

"-components TVI T2
W2

Af
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I. IMtRODUCTION

When one considers the high degree of three-dimensionality char-

acteristic of almost all bodies of aerodynamic interest, it seems re-

markable that the study of three-dimensional boundary layers has gained

so little popularity among aerodynamicists. Physico-chemical or elec-

tromagnetic complications are frequently introduced into studies of two-

dimensional or axisymetric boundary layers, but geometrical complica-

cions are regarded with great trepidation--if regaided at all.

The possibility that this attitude not only defied practical real-

ity but also hampered our efforts to understand fluid motions was ini-

tially brought to my attention by a lecture given by Dr. E. A. Eichel-

brenner of O.N.E.R.A., by Professor M. J. Lighthill's stimulating chap-

ter in Rosenhead's Laminar Boundary Layers, and by a great number of

articles in the meteorological literature, especially those describing

attempts to integrate the "primitive equation" as a model of large-

scale atmospheric circulations.

The opportunity to investigate the matter further was provided by

RAND, at the suggestion of Dr. Jerome Aroesty. My early impressions,

gained from reading the survey articles listed in the bibliography,

have confirmed my feeling that this topic is worthy of a more broadly

distributed interest among fluid dynamicists.

The objective of this Memorandum is to provide a nonspecialist'sI: view of the work of specialists. It is assumed that the reader is sub-

stantially familiar with two-dimensional boundary layer theory, and

thus has a feeling for how the magnitude of the velocity vector is re-

duced through the boundary layer under various sorts of external flows.

Our discussions of three-dimensional boundary layers will focus on how

the direction of the velocity vector varies throubh the boundary layer,

and hence little attention will be paid to those flows (i.e., axisym-

metric, nonspinning) in which no such variation appears.

It is in this turning of the velocity vector that we discover the

phenomenological richness of three-dimensiopal boundary-layer flows.

Freed from the constraint of two-dimensional motion, the fluid seems

to "come alive," seeking more or less tangential detours around
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$'obstacles" imposed by the pressure distribution, bringing about a fas-

cinating topology of skin friction lines or "surface streamlines," com-

plicating the concept of separation, and so on. We would hope to

achieve from our study some feeling for how and why these things occur,

perhaps sone rules of thumb concerning the effects of body spin or of

inviscid streamline curvature to add to those for the eftects of stream-

wise pressure gradient.

It should be understood at the outset that this Memorandum does

not constitute a review article in the usual sense. In the first

" place I am not perauially expert in the subject treated, and have de-

rived my information entirely from the writing of others. Topics of

real practical importance, su :h as the effects of compressibility and

of spinning bcdies, have frank*y not been accorded their deserved

share of attention, partly by intent (to focus attention more sharply

on purely geometrical complexities) and partly by the limitations of

time and my acquaintance with the literature.

This Memorandum begins with a largely intuitive review (and exten-

sion to three-dime-asional flow) of the concept of a boundary layer and

of a properly posed problem of steady flow in boundary-layer theory.

The laminar boundary-layer equaticns are then presented in orthogonal

curvilinear coordinates. For steady, incompressible flow we introduce

the Falkner transformation to eliminate the normal veloc-ity a-d to

state the tangential momentum equations in a form convenient f,;r all

our future discussions of laminar flow. These discussions begin with

a suggestion for finite-difference solution procedures in various co-

ordinate systems, following the method applied to two-dimensional flows

by Smith and Clutter (1963), but making frequent reference to the

method developed by Raetz (1957) for three-dimensional flows. Efforts

to depart from the same starting point by series expansion in the sur-

face coordinates are noted. A brief review of exact similar solutions

at stagnation points and for flow over developable surfaces follows.

Next treated are the two principles that have been exploited in

most solutions found to date, namely the independence principle for

swept flows and the prevalence priLciple for cases with weak secondary

flow.
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Returning to a more general viewpoint, we give a semi-intuitive

discussion of the causes and nature of secondary flows, and a fairly

extended discussion of the topology of skin friction lines, or "sur-

face streamlines," concluding with a definition and discussion of

boundar-layer separation in three dimensions.

Momentum-integral approximation methods are discussed next, both

because they lead to some useful results with a considerable savings

in computational effort, and because the difficulties into which they

occasionally lead us provide useful tests cf our intuitive understand-

ing of the boundary layer. The momentum-integral equations are de-

rived directly from the Falkner-transformed equations for laminar flw,

and are later re-derived more conventionally for turbulent flow, to

provide a check. Velocity profile assumptions and the use of weighted

integral equations are discussed at some length.

Compressibility effects are mentioned very briefty and mostly by

reference in Section XI, as are laminar-flow stability in Section XII

and transition to turbulence in Section XIII. The displacement thick-

ness of a three-dimensional boundary layer is defined in Section XI.

An extended discussion of the incompressible turbulent boundary

layer follows (Section XIV), with the assumption that the reader can

benefit from a brief review of the problem of formulating a momentum-

integral approach for two-dimensional mean flows. It is concluded

that very successful three-parameter models of mean velocity profiles

exist, but that methods for predicting the variation of the profile

parameters are still essentially deficient. No three-parameter pro-

file model as generally successful as the "wall-wake" model of two-

dimensional flow has yet been found for the three-dimensional case.

Fir-ally, the Memorandum concludes with a number of suggestions

for experiments, calculations, or analyses which appear potentially

fruitful for developing our powers of description and prediction in

the areas covered,

The bibliograpy is not complete, but does include all available

recent survey articles. These in turn contain comprehensive biblio-

graphies, from which almost all the individual references given here

are drawn. One gets the impression from current issues of abstracting

I%
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journals that the subject currently receives little attention in com-

parison with more recently glamorous subjects, so that even a 1962 or

1963 bibliography or survey article may be considered reasonably up

to date. The sources which have most influenced the spirit of this

Memorandum are the survey articles by lIzger (1964), Head (1961), and

Rotta (1962), the chapters by Lighthill (1963), the report by Raetz

(1957), the paper of Smith and Clutter (1963), the N.L.L. reports of

f Timman (1951) and Zaat (1956), the paper of Coles (1956) and the

O.N.E.R.A. publications anJ other papers by Eichelbrenner and co-

workers.

Ii
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iI. THE BOUN ARY-IAYER APPROXIMATION IN THREE-DIMENSIONAL FLW

Survey articles (e.g., Moore (1956) or Mager (1963)) usually dis-

tinguish between beundary-layer flows and boundary-region flows. in

the examples usually cited, the distinction seems to be the following:

(A). In boundary-layer flows we may treat diffusion as pro-

ceeding in only one direction, normal to the wall.

This generalizes the concepts of two-dimensional boundary-layer

theory, in which streaurwise diffusion is neglected, to state that dif-

fusion in all directions parallel to the wall is to be neglected.

The physical idea behind this approximation is the thinness of

the boundary layer, as measured along a normal to the wall, compared

to typical streamwise or lateral distances of inLarest.

in boundary-region flows, e-xempihfied by flow along a corner or

edge where two walls join abruptly, there is clearly no unique normal

direction at a boundary-layer point close Lc the corner, and hence

lateral diffusion must be reinstated. Tht=e flows are not treated

here.

(B). In boundary-layer flows we may take the pressu: z to be

predetermined (on first approximation) by rise in-isci:-

flow pattern on the s,,face cf the given tirity.

The accuracy of this assumption depends upon 41) the boundary

layer being thin relative to any local radius of c:rvature of the body,

and (2) the "displacement effect" of the boundari layer producing only

small perturbations in the local external flow.

Both assumptions A and B may be violated by th- phenomenon of sep-

aration, if this leads to detachment of a thin shear layer the normal

to which does not nearly coincide with the local norm to the wall.

In such a case assumption A would misdirect the dominant diffusive

flux, and the large displacement effect would violate assumaption B.

We shall often need a word to indicate the direction, parallel

to the wall, but normal to the local velocity vector. For this we
choose "lateral."
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III. BOUN3ARi VALUES AND INITRL DATA

&ne specification of boundary values for three-dimensional bound-

ary-layer problems exactly parallels that for two-dimensional flows.

We ordinarily specify no slip at the well for the tangential compo-

nents of velocity, and may prescribe an arbitrary distribution of nor-

mal "-iocity (suction or blowing) on the ;:all, so long as we do not

thereby excessively thicken the boundary layer. (Roughly speaking,

these normal velocities should only be of the order of magnitude of

those arising spontaneously in the boundary layer in the impermeable

wall case.) Temperature or heat transfer, and concentration or mass

transfer must also be given at the wall.

At "infinity" with respect to a suitably stretched normal distance

variable, the tangential velocity components, temperature and composi-

titr. erc .'.,ated t' the .,aites of thebe quantities a;pearirg st th2

wall in the inviscid flow solution. The normal velocity is not speci-
fied there, but is derived from the boundary-layer solution,

As w, shall discuss in more detail in Section VIII, the boundary

layer in steady flow over a smoothly curved body can be said to be

bo.rn at a finite number of isolated nodal points of attachment, some

of which coincide with the attachment points, or "forward stagnation

points," of the inviscid flow. In the immediate vicinity of such at-

tachment points can be found a local similar solution of the boundary-

layer equations, which is also an exact solution of the full Navier-

Stokes equations in an infinitesimal neighborhood of the normal at the

stagnation point. These special solutions can be used to establish

initial data for a boundary-layer calculation in an extended region

surrounding the attachment point by assigning values to all unknowns

on a "wall" of normals arising out of a conveniently chosen surface

curve enclosing the attachment point.

If the inviscid flow attachment is along an infinitely sharp lead-

ing edge (or an edge which is rnnve-niently idealized as such) then the

boundary layer is born all along this edge and its initial development

is given by a similar solution Lf a Falkner-Skan type. This can be

used to construct initial data on a normal wall closely paralleling
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the leading edge. This procedure would also apply to the degenerate

case of essentially two-dimensional flw in whic't the leading edge is

a cylinder of finite curvature aligned exactly i'ormal to the orcoming

flow. (Think, for example, of a ring wing or axisymmetric engine in-

take at zero incidence.)

So far, the discussion resembles the corresponding one of two-

dimensional boundary layers. Complications enter, however, when we

consider the effects of three-dimensionality on the domain of depen-

dence downstream of a finite segment of our "initial data curve."

Having adopted the assumption that, with boundary conditions

given as above, the boundary layer evolves under the influence of a

predetermined pressure field in a region in which diffusion takes place

only along the normal to the wall, we expect to be able to construct

solutioas by starting with the given values on the "initial data sur-

ftce" and "marching" s'eadily downstream, accounti.L a- each step fer

the modification of the velocities, etc., by convection along the lo-

cal velocity vector and diffusion along the local wall normal. An im-

mediately practical question is the following: "Over what area of the

body surface will the solution be completely determined by the given

pressure distribution and inviscid velocity field, and by the solution

already known over a given finite segment of the 'initial data curve'?"

In Fig. 1, AB is the finite segment in question. We assume that

and the entire curve of which it is part, is oriented so that all

boundary-layer particles cross it from one side to the other. This

condition, which physically requires that all flow entering the region

downstream of the "initial data surface" comes from a single "boundary-

layer birthplace" or attachment region, amounts mathemaLically to the

requirement that the initial data surface not be tangent to, or crossed

more than once by, a characteristic curve of the boundary-layer equa-"

tions (see Raetz (1957) for mathematical discussions).

Raetz states an "influence principle" as follows. "The influ-
ence of the solution at any point is transferred to other points first
by conduction along the straight line paralleling the C axis [the nor-
mall and passing through that point and then by convection downstream
along all streamlines through that line." He calls the dashed lines
through A and B the "outer and inner characteristic envelopes."



Fig. I -- Regions of. influence and domain of dependence,

Particles which follow varied downstream trajectories Will pass

through any of the normals generating the surface over AB, according

to their initial distance from the wall.

If we imagine the normals through A and B to be line sources of

dye, the plan view of the distorting dye sheets in the downstream re-

gion would exhibit the shaded banners of the sketch.

According to our assumption of purely normal diffusion, every

particle in the boundary layer over these shaded banners can become

stained by this dye, whether or not it passed through the normal over

A or B, but no other particles are contaminated. The shaded regions

can then be called the regions of influence of the initial data lines

through A and B.

Correspondingly, the boundary layer over the unshaded region be-

tween the two banners knows only about the past history of particles

which have passed the initial data surface over the arc AB, and hence

the unshaded area is the area referred to in the underlined question

above. We shall call it the domain of dependence of the solution over

the arc AB, although in the strict mathematical sense that term should

include also the region upstream of AB, defined by stream surfaces

which eventually converge at the attachment normal.
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It may appear startling to assert that once we have adopted the

boundary-layer approximations we have, in effect, no further need of

the fluid which passes outboard of the lines over A and B, in order

to determine the flow in our unshaded region! However, there are but

two ways in which this fluid can make its presence felt. The first is

by pressure, but that should be predetermined. The second is by lat-

eral diffusion, but we have ignored that for the moment.

a

1

gI

.. !
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IV. BOUNDARY- LAYER EQUATI ONS IN ORTHOGONAL COORDINATES: lAMINAR FLOW

p CON"INUITY AID MOMENMMH EQUATIONS

Following the notation of Mager (1963), to whom the reader is re-

ferred for detailed discussion and references, we introduce general-

ized orthogonal coordinates §, 1, C. The lines of constant § and 11

form a network on the body surface, and C increases away from the body

along the normal.

The increment of distance between coordinate lines and + d§

is hI df; corresponding increments are h di and h dCo For thin
2 ~ad 3 d

boundary layers we can assume that the metric coefficients satisfy

h = h1(§,71), h2 = h2(ITq), 3  1

so that C can be interpreted as actual normal distance from the wall,

which lies at C 0.

The velocity components in the §, 11 and C directions are called

u, v, and w. The corresponding surface velocities of the inviscid

flow are

U(9,),I VVI, and 0

The boundary-layer assumptions reduce the ccmplex expressions for

viscous stress components in a general orthogonal coordinate system to

the two simple resu!ts

u 6V

We do not, of course, have to define C as the normal distance
itself. Raetz, for example, takes

- (1 - u/U)1 /2

after demanding that and l be so oriented as to render u/U monotonic
in normal distance.
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The continuity equation is simply

+ I (h 2 up) + (h 1 vP) + (hjh 2 wP)} 0

The -component of the momentum equation is

bu + '- u +v__ __ u + u +uv 6 v2
T-t h a h 2 all +w h , 1+hhB

22 1

+ - 2,3v -- +L-R I . = Ph 3 2h 1 6§ ph1  ID P

The 1-component reads

av u Bv v av av u2  h u . v h2T" , T§I + T-2" 7"-' bC hlh2 b5q hlh2 '

1 ~ 22 1

+2 2 + 2'3u ph--R 2  + a

The C-component reads

2(w u . WlV) 2R2 0

2 " 1V) - 6C R

In the §- and T-component equation, the top lines simply give the

components of acceleration, while the terms in the bottom lines repre-

sent (1) a body force derivable from the potential A, (2) a Coriolis

force arising if the body (and hence the coordinate system, is spin-

ning uniformly and steadily with respect to an inertial frame, (3) a

centrifugal force derived from such spinning, (4) the predetermined

pressure force, and (5) the viscous force.
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The local , f, and C components of the angular velocity of the
~ 2 2 2

body are 'i, 1  and j3, vith W = + + .The distance from

the spin axis to the point (§,11,r) is R.

The C-component equation asserts that the pressure gradient nor-

ral to the wall counterbalances the body force and the "forces" due

to spinning. These forces are assumed to be sufficiently small so

that throughout the thin boundary layer we may take

[ r= p(g,T,)

wich p relatea to the veLocities U and V by

aU U aU V _V + V h1 V 2
6t 6 h h h hh

-- .~ ~ ~ +h - + h 2 1 + l 2  l 2

2
lA w 7 R 1 0

SV - - R +
E 3  2hI b Pehi 6

and

V)V V2V U2  1 UV 6h2

-t h 1  h2 61 hlh2  hlh2  b§

1 2A 2 2 1_ 2

2
+ hL -A + 2w3U w2h 2  + -Ph 1 . 0

Here, pe designates the surface density of the inviscid flow.

In compressible flows, in which p and V, must be treated as vari-

able, we need also the energy equation, an equation of state, and a

description of the dependence of p and of the thermal conductivity

upon the thermodynamic variables. In what follows immediately, we

shall assume p = p = constant, and = constant.

This assumption focuses attention on effects due to the three-

dimensionality of geometrical constraints, or to Coriolis force. When K -
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P = 0 e , gravity and centrifugal forces act equally on boundary-layer

and external flow, and hence this assumption rules out qualiLatively

interesting phenomena such as 1ree convection. We shall comment brief-

ly on these and other, primarily quantitative, effects of variable den-

sity and viscosity in Section XI.

THE FALKIER TRANSFORMATiON

For discussions of exact self-similar solutions and foi the for-

mulation of systematic methods cf _zelculation of .-ore geurai bounddry-

layer flows, it is helpful to transform variallas in some manner which

accounts roughly for the anticipated magnitudes of ooundary-layer thick-

ness and veloc-ity components. Many such transformations are available.

We choose, rather arbitrarily, that associated with the name of Falkner.

We call

L' y

where L is a characteristic body dimension and v is the kinematic vis-
cosity. Thus

ax- I x x Y ay 0

az (m -l1z (an z z fi
L'

where

Zn U a In U
m(xy) b In x' n(x,y) ny

Laminar Boundary ers. L. Rosenhead, ed., Oxford, 1963, p.
266 (hereafter cited in the text as L.B.L.).

The choice of U rather than V and of § rather than i in t-e nor-
malization of C implies only that § increases in a more-or-less down-
stream direction, and that U # 0 except at singular points or lines.

7'
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Later we shall also want the abbreviations

n mV - .n Vr(x,y) =-6I s(x,y) B= n
6 In x' B In y

Our dependent variables are written as

U - U(xy) z f(X.y,z)

which we designate simply u Of". At this point the prime of f does

not imply that f depends only upon z, but is simply a shorthand. We

shall write out Bf/ax and fh@y fully. Similarly, we write

v V(xy) - g(x,y,z) Vg'

Using the continuity equation, with p = constant, we find, for the

simple case of an impervious wall,

1 x ru + f +- - zf' +x-
w hh2 AUT h f\1

where we have introduced our final shorthand notation

B Ln h 6 In h
K- In x X a tn y

If u, v, and w are to vanish at z - 0, we see that boundary con-

ditions on f and g are

f(x,y,O) f'(x,y,O) g(x,y,O) gt(xyO) - 0
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while

f'(x,y,) = g'(x,y,) = 1

The transformed component momentum equations, in which the pres-

sure gradients have been eliminated in favor of inviscid-flow velocity

gradients, etc., become

g"'+ (M + X ff" + a- (1 i - f + 1 L -+ X) gf
2 h I ~ Uy h2 1

+ + (l - g f'), 2( 3

I \UIbg

{l(f f ;5,f) + g +1 f M

1 x 2

and

+ h2 (I - 12) + 2 . - f

TLE TRANSFORMED EQUATIONS IN "INTRINSIC COORDINATES"

Of the various possible special orientations ot the and q axes,

one of the most interesting is that in which § measures distance down-

stream along the surface streamlines of the inviscid flow. The corre-

For convenience, all numbered equations appearing in the text
are collected in the Appendix, p. 89.
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sponding surface coordinates are raled "intrinsic coordinates." This

choice of coordinate system implies that V = 0, and calls for a renor-

malization of v, as, for example,

v = U(x,y)G'(x,y,z)

Then G(x,y,O) = G'(x,y,co) = 0.

The transformed momentum equations become slightly simpler, namely

+ ff" + I (I - f' 2 ) + +

- (n + X)G'f + I- G 2 + 2 ("3L xG'

= x. ( - --- -) + -L('"B - I (3)
h1 a h2 vT~

and

Gf 1 (m + + Y-(M+XG

h"' - 2 1 -hf" - ~) f1G 1+~ --
1y h 2  2IX

- n' - X(l - f12)} + 2(--) x(l - f')

x 2fy G 'f + -L (G1 x X 3X h y C41l
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V. EXACT SOLUTIONS. INDEPENDEICE PRINCIPLE, AND CONDITIONS FOR

ABSENCE OF SECONDARY FLOW

STAGNATION POINT SOLUTIONS

Suppose we deal with a "rounded" body, to which the flow from up-

stream "attaches" at some point P, which we take as the origin of co-

ordinates. In the ininediate vicinity of P we can expand the surface

metric coefficients in power series in x and y, e.g.,

h1(xy) h(0,O)+9) (O,O)x + ti)(O,O)y +

In particular, we choose a system of coordinates that is locally rec-

tangular at the origin, so that

h1 (0,O) = h2 (O,O) = I

Since (M h/bx) 0,0 and the similar derivatives are finite, we have,

in the vicinity of the origin,

= X. = 0

Furthermore, if the approaching upstream flow is irrotational, it

can be shown that there is an orientation of the x and y axis for which,

in the vicinity of the origin,

U Ax+..., V = By+...

The desired orientation of the x and y axes is along the principal

directions of curvature of the surface. To be specific, we may take

the x axis along the direction of maximum (convex outward) curvature.

Then we shall have A > 0 and A > B.

If B is positive, we speak of a nodal attachment point; if it is

negative, we designate it as a saddle point of attachment.
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We see :hat the given U and V correspond to

m 8 1, n - r = 0

All the parameters on the left-hand side of Eqs. (1) and (2), in-

cluding the new parameter

B VxA Uy

are constants. We exclude spinning of the coordinate system, so W3  0.

We can therefore expect to find similar solutions for f and g, for

which faix = bg/x = 0. The governing equations reduce to

f"'+ (f + Cg)f" + 1 - f' 2 = 0

g,+ (f + Cg)g" + C(l - g,2) = 0

These have been solved numerically by Howarth (1951) for 0 ! C - I,

and by Davey (1961) for -1 < C 0. Extension to compressible flow has

been made by Poots (1965) for -.5 C < 1.

The limiting cases C = 0 and C = I clearly correspond to the two-

dimensional and axisymmetric stagnation points, respectively.

We have mentioned the practical importance of the nodal solutions

in Section III; tabulation and further discussion are given on pp.

461 to 467 of L.B.L. The saddle-point solutions are particularly in-

teresting, in that for 0 > C > -0,4294 they propose a locally deter-

mined solution for a region of flow which lies within the domain of

dependence of initial data curves surrounding neighboring nodal points.

This is not permissible in principle, but may be approximately useful

in practice if the boundary layer has effectively "forgotten" its

initial data by the time it gets close to the saddle point. For

-0.4294 > C > -1, Davey's solutions are particularly intriguing, show-

ing a streamline pattern which changes over from saddle- to node-like

behavior as z decreases towards zero. The g ' profile shows reverse
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flow near the wall and the flow thus appears in a sense to be separated.

(A careful discussion of separation follows in a later section.) Never-

theless, for C > -1, the displacement thickness of the boundary layer

is finite and the external flow is still approaching the wrall along the

stagnation streamline. The saddle-point region for -0.4294 > C > -i

does not lie within the domain of dependence of neighboring nodal points,

and in many wayE seems to be a region wetted not directly by the flow

from upstream, but by a very simple type of wake flow.

"DOUBLE" FALKNER-SKAN FLOWS OVER DEVELOPABLE SURFACES

Developable surfaces can be "unrolled" into a plane without wrin-

kling, and hence our (§,l) coordinates on such surfaces can be every-

where rectangular. This makes

h h 1, X - 0 everywhere1 2

Now if 3 0 (no spinning) and if we can find an orientatio- -:

y axes such that

U - Axmyn  and V - Bxy s

with constant A, B, m, n, r, and s, and if the constants are related

by

r - m- 1 and a - n+ 1

there will exist similar solutions governed by

r,"+ m +I f f" + m(l - f, 2 ) +.a + n( - gf} 0

and

g+M + 1 fn, B ,+ 2 12,S+ m2 fg" + (m - l)(1 - f'g') + _2 gg + (n + )(i -
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These have been solved by Yohner and Hansen (1958) for B/A = I

and 2, and for many combinatiors of m and n. The assumed inviscid

flows are in general quite rotational, and the resulting nonuniformi-

ties of total pressure lead in some cases to "overshooting" f '-pro-

files.

Similar solutions of a particularly interesting type are also ob-

tained for arbitrary r and m, providing that n = s = 0. The inviscid

flows are again rotational for r > 0, and the governing equations are

f &I+ a_+ i ffo + m(l - f12) = 0 (The Falkner-Skan equation)

2

and

g aI+ 1 fg" + r(l - f'g') = 0

These have been solved by Hansen and Herzig (1956) for m = 0 and for

integer values of r from I to 10. These authors noticed that the equa-

tion for f' does not contain g', and that the equation for g' is linear,

when fl is considered to be known. Thus solutions for any fixed m,

but with V given by a polynomial in x, can be generated by superposi-

tion. They give examples from the field of turbomachinery and exhibit

some interesting comparisons with experiment. Yohner and Hansen (1958)

also consider this case, and obtain solutions for all combinations ob-

tainable from m = 0, 1, 2, 4, 6, 8, 10 and r = 0, 1, 2, 4, 6, 8, 10.

THE INDEPENDENCE PRINCIPLE

The equations treated by Hansen and Herzig (1956) exhibit the spe-

cial feature that f can be found independently of g, and we may inquire

as to how generally this can be done.

We examine Eq. (1) and observe that g appears only in terms con-

taining derivatives with respect to y (including the parameters X, n,

and s), the curvature parameter n, and the coordinate rotation speed

W3" Thus, in a y-independent flow over a nonspinning body with a de-

velopable surface, f is independent of g. This is the independence

principle.
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A sample flow would be that over a yawed, infinite cylinder, with

y measured along the generators of the cylinder. Then V is a constant

and the governing equations are

f/11+ (m + I ff + m(l - f 2) = x(f' f - - bf f f)

g",+ I--2--) fg" m+ 1 ~& -"~
2 bx x

(2

The equation for f is that solved by Smith and Clutter (1963a)
for a variety of x-wise pressure distributions. The equation for g

is a second-order linear equation for g', so that the generation of

solutions for the spanwise flow (g') for any of Smith and Clutter's
chordwise flows would be a relatively simple matter. A procedure for

doing this numerically is suggested by Lindfield, Pinsent, and Pin-

sent.

For the special case m = constant, the equation for f is the

Falkner-Skan equation. The corresponding similar span-wise profiles,

g1, have been found by J. C. Cooke (1950), whose results are tabulated

on p. 471 of L.B.L. (In that table they are called g.) Clearly the

case m = 1 gives the same f and g as Howarth's stagnation point solu-

tion for C = 0 (the cylindrical stagnation point).

CONDITIONS FOR ZERO SECONDARY FLOW

With secondary flow defined as flow at right angles to the invis-

cid streamlines, we see that it is given by the function G' of Eqs. (3)

and (4). (Recall that these are written for "intrinsic" coordinates,

with t measured along, and I normal to, the inviscid streamlines.)

In Eq. (4), every term contains G or a derivative of G, except for

one term, proportioral to X, and another proportional to w3* We rule

out the second by postulating zero spin. In order to make X vanish,

we first recall that

Boundary Layer and Flow Control, G. V. Lachmann, ed., Pergamon
Press, 1961 (hereafter cited in the text as B.L.F.C.).
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(nh) 6h

, - (Ln y) h h2Y h h 2 BY 2 h21

where K is the geodesic curvature of the coordinate line of constant

11 (in this case the inviscid surface streamline). Geodesic curvature

of a surface curve at a point P is the curvature of the projection of

that curve on the plane tangent to the surface at P. Surface curves

are called geodesics if they have no geodesic curvature and hence ap-

pear locally straight when viewed along a normal to the surface at P.

There are an infinite number of geodesic curves through P, each with

its own tangent direction. (A familiar example is given by the "great

circle" routes over the earth's surface from one city to various others.)

Hence, if w3 = 0 and if the inviscid flow surface streamlines are

geodesic curves of the body (as they are, for example, in the Newtonian

hypersonic flow theory) the equation for G't will contain no term inde-

pendent of G". Since G1 is subject to homogeneous boundary conditions,

G1 - 0 is the indicated solution and there will be no secondary flow.

SIMILAR SOLUTIONS FOR SIMPLE SPINNING FLOWS

When w3 # 0 it is still possible to find some exact similar bound-

ary-layer solutions, but we omit discussion of these here, for lack of

time and space. The reader is referred particularly to Moore (1956)

and Mager (1963) for excellent reviews.
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VI. CAILUIlATION SCHEMES FOR ABFTRARY BODY SLAPES

In problems in which the right-hand sides of Eqs. (3) and (4) do

not vanish, we must deal with partial differential equations in three

independent variables. The usual approach is to replace these equa-

tions by a sequence of ordinary differential equations (with indepen-

dent variable z) by either (1) postulating convergent expansions of fV

and G' as Dower series in x and y, with coefficient functions f!. (z),

G' (z) determined by ordinary differential equations (a generalization

of the Blasius series approach to two-dimensional problems), or (2) ap-

proximating x- and y-derivatives by finite differences, and solving

ordinary differential equations at each mesh point (xi, yi), (a gen-

eralization of Smith and Clutter's approach to two-dimensional prob-

lems). In either procedure, careful attention must be paid to the con-

cepts of region of influence and domain of dependence in order to fa-

cilitate the organization of computations and to avoid fundamental er-

rors.

SERIES EXPANSIONS

I am not aware of any published study of the application of the

Blasius series method to general three-dimensional boundary-layer prob-

lems. There have been several applications to the computation of cross-

flow velocity profiles in cases which are governed by the independence

principle, or which are reduced to quasi-two-dimensional problems by

assumption of weak cross flow. Some of these are reviewed by Mager.

It appears in some of these works that more terms in the x-expansions

of Blasius are needed to provide satisfactorily accurate cross-flow

profiles than are needed to get good streamwise profiles. It might be

worthwhile to look into the possibilities of applying this method's

self-similar nodal attachment point solutions to some body such as an

ellipsoid.

FINITE-DIFFERENWE PROCEDURES

Raetz has been the principal contributor to the technique of di-

rect numerical assault on the three-dimensional laminar boundary-layer
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equations. He and his co-workers have computed the growth and stability

of laminar boundary layers on airplanes, accounting for compressibility

and distributed suction. We shall not describe the detail8 of his meth-

od, but only sketch here a generalization of the approach applied suc-

cessfully to nonsimilar two-dimensional boundary layers by Smith and

Clutter (1963 and 1964). This method employs the boundary-layer equa-

tions in the same transformation as we use here, and seems a little

easier to explain. Given the difficulties of guaranteeing the accura-

cy of finite-difference solutions of partial differential equations,

it might actually be worthwhile to develop this procedure into a work-

ing alternative to Raetz's method, and to compare the two by applying

them to identical problems.

For two-dimensional or axisy-mmetric incompressible flow, Smith And

Clutter (1963a) integrated the equation

f I' k +  ff4, + m(l ') f x- "
_2 + K)=x

for specified distributions of m and Y versus x. The calculaticn

started with initial data given by the appropriate self-similar soiu-

tion at x = 0, and thereafter approximated f'/x and bf/bx by trail-

ing finite differences. At each discrete value of x., an ordinary dif-

ferential equation for f(z,x ) (in which the values of f, f' etc. at

Xn I appear as variable coefficients) is integrated by numerical meth-

ods familiar from the study of similar boundary layers. This consti-f

tutes a computationally stable, implicit finite-difference scheme, the

accuracy of which could be controlled by restricting the permissible

values of x /Ax . In their second paper, the method is extended to
n n

compressible flow, requiring the simultaneous numerical solution of

two coupled ordinary differential equations at each x-value.

The method suggested here is analogous to the former in that fi-

nite-difference operations would be used for both b/bx and b/8y, and

a coupled pair of ordinary differential equations integrated at each

(xy) mesh point. Because the finite-differencing -ast not he done in

two dimensions, even more care and study would probably be required

to insure computational stability.

A
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The firite-difference procedure would be started at an "initial

data surface" surrounding a nodal attachment point or a sharp edge of

attachment, and would probably employ intrinsic surface coordinates

[Eqs. (3) and (4)1-

One point which might require special care in the finite-differ-

encing with respect to y is related to the fact that G' can change sign

in the boundary layer. Since the sign of G' indicates the local direc-

tion of convection by the secondary flow, and since a fluid particle

carries its initial data downstream, it would probably be necessary to

devise a differencing scheme which uses the data from the side from

which the flow approaches the point in question. if the inviscid flow

is irrotational, we can conveniently let the constant curves be

equipotentials, specifically setting = = )/U , where U is a

constant reference speed. Then hI = U /U and X + n = 0. The determi-

nation of h2 is then directly coupled to the preliminary task of com-

puting the inviscid flow over the surface. The coordinate curves of

constant I, (the inviscid streamlines) might rationally be spaced (and

h2 thereby defined) so that

Uh d,
2'

is independent of i, when the integral is evluated along an equipoten-

tial. This subdivides the inviscid surface flow which "issues from

the attachment point" into equal amounts 2or equal increment of T1.

For later reference we note that in thiq coordinate system, K measures

the lateral spreading of inviscid surface streamlines--a three-dimen-

sional effect which can be artificially eliminated by a generalized

Mangler transformation. The combination m + K measures the surface

divergence of the inviscid velocity field, and vanishes for problems

in which the inviscid flow is two-dimensional in planes parallel to
the (necessarily plane) wall on which the boundary layer grows, Such

might be the case on the floor of a wind-tunnel turning section.

An important modern reference on this subject is Hess and Smith
(1963).
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WEAK CROSS-FLUel METHODS: PREVALENCE PRINCIPLE

A great man y approximate calculations of three-dimensioral bound-

ary layers take advantage of the fact that the inviscid streamlines

may not deviatv. Loo much from surface geodesics, particularly in re-

gions of favorablc streamwise pressure gradient, and of course, in the

vicinity of special lines of body symmetry. In such cases secondary

flows are weak and have small effect on the primary or streamwise ve-

locity profiles. This is called the "principe de prevalence" by Eichel-

brenner (1957), and the corresponding theory might be more prosaically

termed the '%;eak cross-flow theory."

In its "zeroth approximation,'" the weak cross-flow theory sets G'

and G equal to zero in Eq. (3), which thus is returned almost to the

form treated by Smith and Clutter (1963a), namely

This equation can be integrated along each inviscid streamline. The

first nonzero estimate of secondary velocities is then obtained from

Eq. (4), in which only terms linear in G and its derivatives are re-

tained. This is again an equation which can be integrated along in-

viscid streamlines by Smith and Clutter's method,

(m + + ,G G1 ( 2)
U xf'G1 - 2 G"

+ 2 1- -)x ( -f') -hl --

in which f and fV are taken to be the zeroth-order streamwise solu-

tions. The y-derivatives which would appear in the equation for the

noxt approximation to f are then approximated by finite differences

constructed as known functions of x by use of the lower approximations

to f !_A G on neighboring streamlines (curves of constant y), and once

again %L obtain an equation which can be integrated, in the manner of

S
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Smith and Clutter, along the inviscid streamlines. An analogous pro-

cedure can be applied to the momentum-integral equations, to convert

them from partial differential equatfon in x and y to a sequence of

approximate ordinary differential equations in x. This procedure is

discussed by Eichelbrenner and by Mager (1964).

I

I
I A
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VII. VORTICITY OF TEE-DIMENSIONAL BOUNDARY LAYERS

Sometimes we can establish an intuitive grasp of complicated flow

phenomena by considering the sources and history of vorticity, parti-

cularly in the case (= three-dimensional flows. Our building blocks

are the vorticity equation and certain results about sources of vorti-

city at solid walls, and our end product is an understanding of the

origins and development of secondary vorticity and of the pattern of

vortex lines and skin friction lines on the wall.

From the vorticity equation we learn that there is only one ini-

tial volume source of vorticity in an initially irrotatioal flow un-

der the action of body forces derivable from a potential. This source

proportional to grad p x grad p is called baroclinicity by meteorolo-

gists, and it vanishes in a fluid of constant density. In its absence,

vorticity must initially appear at a boundary of the fluid region.

Once in the fluid, it may be diffused from particle to particle by

viscous torques, the direction of diffusion being along the normal to

the wall in boundary-layer flows. Aside from the effects of barocli-

nicity and viscous torques, vorticity is simply carried along with the

moving fluid in such a way as to conserve the flux of 0 + 27 across

any surface element of fixed material identity. Many implications of

this are exhibited in the films "Vorticity" and "Secondary Flow" in

the series sponsored by the National Committee for Fluid Mechanics

Films.

THE SURFACE SOURCE OF VORTICITY IN INCOMPRESSIBLE FLOW

The diffusive flux of vorticity 0 across a surface in incompres-

sible flow can be described by the tensor v grad 0, in the sense that

the vector -n(v grad 0) gives the rate that vorticity is diffused

across a surfas normal to the unit vector n, into the region into

which a points. If the surface happens to be a solid wall, it is

natural to speak of -n(v grad 0) as the vorticity source strength at

a point on the wall. Under the assumption of zero slip, and with the

assumptions of boundary-layer theory, specifically that hI =hl(§,1)

h2  h2( ,1), and h3 = 1, we find

i'
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= --- n x ~o  curl3 '1o L-4- a3

-nC grad = n curl a( jC=o

From the momentum equation, evaluated at the wall with a no-slip con-

dition, we have

r. curl 5 1 grad 

where

P P+( -2 2)

The surface source of tangential components of vcrticity is pre-

determined by the inviscid flow over the body. If we imagine the func-

tion F( ,i) to define a pressure or potential "hill," tangential vor-

ticity is fed into the boundary layer at a rate proportional to the

slope of this hill, and with the sense of rotation which would be taken

by a ball released from rest to start rolling down the hill.

There may also be a surface source of normal vorticity, but this

is not predetermined by the inviscid flow. Like the normal component

of velocity at the outer edge of a boundary layer, or like the surface

values of tangential vorticity, it is part of the response of the

boundary layer to imposed conditions.

If we define "primary" or "lateral" vorticity as that component

of 0 which is tangential to the wall and normal to the surface stream-

lines of inviscid flow, and "secondary" or "streamise" vorticity as

that component parallel to the inviscid surface flow, and adopt in-

trinsic surface coordinates in which V = 0, we find that the wall

source strength of primary vorticity is -(U/hi) 6U/6§ and that the

wall source strength of secondary vorticity is xIU2 - 2w 3U where i

is the geodesic curvature of the inviscid surface streamlines.

Of course, these expressions give only the taugential components

of acceleration of the inviscid flow, along and normal to its surface



-30-

streamlines. If the flow were unsteady, there would be a wall source

of primary vorticity proportional to -6U/ t.

Lighthill, in L.B.L., pp. 83-84, gives an interesting heuristic

derivation of these results without making reference to the pressure

field, thereby making clear that, with p = constant, it is the accel-

eration of the inviscid flow that is responsible for the wall sources

of vorticity.

THE SURFACE VORTICITY

What we really wish to know in a typical boundary-layer problem

is the distribution of surface vorticity which results from the pre-

determined distribution of wall sources. According to our discussion

in Section II, we can see that the surface vorticity at a point

P(§,11,0) must depend upon the sources distributed throughout its "up-

stream-opening' region of influence. This region is defined by the

normal projection on the wall of all the upstream trajectories of par-

ticles which arrive in the boundary layer over P. Actually, not all

such sources have equal influence on the surface vorticity at P, since

the contribution of a given upstream source is proportional to its
-1/2

strength and to a damping factor (i t) , where t is an "average time

of convection" between the source point and P.

SURFACE VORTEX LINES AND SKIN FRICTION LINES

We can imagine the body surface to be covered with a set of curves

everywhere tangent to the surface vorticity vector. Since on a sta-

tionary surface with zero slip, the Navier-Stokes stress relationship

gives a surface shear stress (skin friction) vector related to the sur-

face vorticity by

we see that the family of skin friction lines, which are everywhere

tangent to Trw form an orthogonal mesh with the surface vortex lines.
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The skin friction lines are aiso frequently referred to as "sur-

face streamlines," since they have, according to the boundary-layer

approximations, a tangent which coiecides wii, the limiting direction

of boundary-layer streamlines, as C -0. That :s

lim (,,C)

but the indeterminacy can be resolved, except at isolated singular

points, by L'ltospital's Rule, to give

li o v(Q1,) , -

By use of div ) =0 and T, = X we can show that

C -curlT_ C=O

so that the wall source of normal vorticity is proportional to the

circulation of the skin friction field around the point of observa-

tion.
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VIII. TOPOLOGY OF THE SKIN FRICTION LINES

The skin friction lines of a steady flow, like streamlines in the

body of the fluid, can run together or cross one another only at iso-

lated singular points, which arise where the vector skin friction van-

ishes so that T2/ I is in turn indeterminate. Such "stagnation points"

of the skin friction field are points of flow attachment or separation

if at such a point the surface divergence

j-j- ~ (h2 ' 1 + Lj (hT,))
1h2

is positive or negative, respectively. Such points may also be singu-

lar for the surface vorticity field, in which "sources" correspond to

points of attachment of vortex filaments.

The topology of the net of skin friction lines and vortex lines

is dominated by these singular points, and special studies of the flow

neighboring such a point have been made by R. Legendre (1955 and 1956)

and by K. Oswatir.sch (1957). We give here a very brief resume of the

article by Oswatitsch, which contains many perspective drawings which

greatly facilitate understanding.

For a local study near a surface point, we place the origin of
coordinates at that point ( , =  = 0) and adjust the (arbitrary)

spacing of the §- and -coordinate surfaces so that hl(0,0,) I
h (0,0,0) = 1. Taylor series to the second order in §, 11, and are
2

postulated for u, v, and w. These are indicated by the single vector

equation

Many English authors have explored the possibilities of expan-
sion the, than the simple Taylor series in the vicinity of separa-
tion. For a recent example of this line of thought, see Brown (1965).
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u(, -,u) + 2- +-

2-2-
2 o u 2 3

+ - + - + c22  ,-2  2/

+ '3u + 2u + Ua2  '

3

where all the derivatives of u are evaluated at the origin (0.0,0).

The wall is stationary and impervious, so u(§,'!,O) = 0. Thus, at

points on the wall

- 2- 2- 2a u 2u U2 02 ~ .. . .. -== 0
a g ? 8a 2 bt~ 2a

From the continuity equation, we next find that, on the wall

2 2aw a w w 0

- - - = 0

Finally, we differentiate the continuity equation with respect to

and find that, on the wall

2 2 2
w K Lu uav +a2 v I

a2 2 3 C l T I--d

where K I K 2 are the geodesic curvatures of the surface coordinate

mesh.

The momentum equation can be used to get

-.2

and

2
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2 v 0 1 - L

22
for points on the wall, where P [p + p( - 1/2 12R2)). Finally, we
introduce the skin friction vector

w

and specify that the origin (0,0,0) is a singular point at which r = 0.
W

Al! this leads to the scalar expressions

2 26

= 11C -- '+ "
2 6§ al

= 2- a-2 2 2
- 2 'qC + ~C +*.

= l-

in which all the differential coefficients are evaluated at (0,0,0).

From these equations follow the differential equations of the

streamlines in the vicinity of (0,0,0), namely,

"2 72

= _ + 2T, - -- + 2 ---
Up a' r T

d + 2"- + 2§
" u "

C P + 1T, + ,2- "-,

2 '2I;+ d G -E
4d u P 6,rI aT1
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aCall
dn v ap+ 2Tn 2  2

Oswatitsch gives the general analytic solutions for these equations,

from which we sample only a few useful results. The first of these

has to do with the skin friction lines themselves, whose trajczcL.rics

(at C = 0) are governed by the nonlinear equation

2

We first see whether any skin friction lines enter the origin by seek-

ing the singular straight-line solutions

d = = tan 6
d§

These exist provided that

This has two distinct real values if

2 T /T

~where

2 T1  T2  aT 8T2 1 1  2

A J - -

6, a 3T 6T
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These parameters, together with

1 2

complerelb determine the skin friction field near the singular point.

There are few general physical restrictions on the values of the diver-

gence (). or the curl (-i), which may develop in the skin friction

field, so we may expect to encounter in practice singular points of

great variety.

4 SYF'ETRIC SINUIAR POINTS

The skin friction field may be curl-free (0 = 0) everywhere in

very special cases (e.g., axisymmetric flow, potential inviscid flow

with geodesic surface streamlines), along lines of symmetry on more

generally shaped bodies (e.g., an ellipsoid of revolution at angle of

attack), oz at least at points of attachment of externally irrotation-

al flow. Singular points encountered under these conditions exhibit

a symmetry, in that the singular trajectories through them are mvtu-

ally perpendicular, so that the . and II axes can be rotated to coin-

cide with them. The symmetry then yields

_-_ = = I
and the general trajectory equation becomes

c with cIdt t

ro be consistent with Oswatitsch's terminology, we can call c the son-

vergence of the singular point. As shown in Figs. 2 and 3, the solu-

tion curves

=a§
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Oc<1 1, 6

Fig. 2 -- Symetric nodes.

k r1=~c tan a

Fig. 3 -- Syur -tric saddlJes.
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all converge at the origin when c > 0 (a node), while ail approaching

trajectories except two (along the § ant' 'I axes) diverge away from the

origin when c < 0 (a saddle point). Convergence, defined in this sense,

is unfortunately not the opposite of divergence, A, but is related to

it by

c=
= ~~--(1+ c)

From any given trajectory plot, one can quickly evaluate c as the

slope of a skin friction curve at the point where it crosses the line

= . It is easy to tell the sign of A at a node by looking at the

arrows on the skin friction lines. At a saddle point we can derive

the rule of thumb: 6 > 0 (attachment) occurs when the approaching

skin friction lines are more closely packed (near their axis of sym-

metry) than the departing skin friction lines.

ANGLE OF THE ATTACYIIN OR SEPARATING STRFMLINE

For the symmetric singular points, 0 = 0, it is easy to find the

slope, dC/d , of the singular streamline which leaves the wall at the

singular point. We 5uppose that 1 = 0 is a plane of symmetry, so that

W8/1 = 0 (hence dC/d )

The general equation is

C-' + 2§ ~

and -he singular, straight-line solution, is

d fi . = :an

di

where
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tans = - C)

The first factor in this expression is the familiar angle of se-

paration of a two-dimensional boundary layer, with specified values of

P/I (> 0 for separation) and 1 / P (< 0, but bearing no unique re-

lation to 6P/ §). We see that at symmetric three-dimenstonal singular

points it is modified by the factor 1 + c, which is > I for nodes, and

< I for saddles. Note that at attachment points of an irrotational

inviscid flow, BP/b§ = 0, and the attaching streamline is normal to

the wall.

ODRE GENERAL SINGULAR POINTS

As illustrated by Legendre and Oswatitsch, J > 0 generally denotes

a node and J < 0 a saddle point. When 0 < J < L2/4, the friction lines

behave qualitatively as around a symmetric node, while for J > L/4

they spiral into the origin. (Replace A2 by Q2 and friction lines by

vortex lines, and the last sentence is again true.) If J is greater

than both / /4 and Q /4, both skin friction lines and vortex lines

spiral. Evidently spiral detachment (J > i 2/4 and A < 0) occurs quiteI

commonly in practice, notably on delta wings. Lighthill's discuzzion

and sketches on pp. 74-82 of L.B.L. are very helpful.

NUMBER OF NODES AND SADDLES ON A CLOSED, SIMPLY CONNECTED BODY

likhthill ites (p. 76, L.B.L.) the following topological law,

that the numbet of nodal points must exceed the number of saddle points

by 2. He says "one may argue that the infinity of skin friction lines

on the surface must begin and end somewhere, which indicates that there

ts at least one nodal point of attachment and one nodal point of separ-

ation. If there are two nodal points of attachment, Lhe skin friction

lines from each must somewhere run into one another, and so have to

divie at a saddle point."
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IX. SEPARATION

SEPARATION UIMS

From the point of view of topology of skin friction curves, un-

separated flow exists when the entire body surface is covered by fric-

tion lines which originate at upstream nodal points of attachmei.t, and

disappear into an equal number of downstream nodes of separation. In

practice, this situation is atypical; experiments ordinarily show the

existence of other nodal 'reattachment' points, at which the incoming

streamline approaches not from the free stream, but from the interior

of a wake bubble. The skin friction lines from the upstream attach-

ment r-ode and those from the wake reattachment node run towards each

other and hence must divide at a saddle point, which will ordinarily

be a saddle point of separation. The singular skin friction lines ap-

proachinAg this saddle point come from the nodes of attachment and re-

attachment. The singular skin friction lines departing from the sad-

dle point run eventually into a node or two nodes of separation.

The latter singular friction lines separate the body surface in-

to a region which is wetted by the upstream flow, and a region which

is wetted by the reattaching wake flow. They are thus legically de-

fined as the separation lines.

The concepts of a separation line and of nodal points of attach-

ment and of reattachment, a considerable variety of sytmietric singular

points, and the rule regarding the relative number of nodes and saddles

are all illustrated in Fig. 4. In it we view a "foot-long hot dog,"

sagging somewhat in the middle. A uniform flow approaches along the

x axis, and the hot dog is supposed to possess mirror symmetry in the

planes y = 0 and z = 0. We view it along a line that is inclined

slightly upstream and spanwise from the z axis, 2o that we see the

forward attachment points and the interesting details on one end. The

sketch is only intended to appear plausible, and does not come from

an actual experiment or calculation. In particular, if the hot dog

were drooped more in the middle and less at the ends, many more sing-

ular points might be expected to appear in those regions. (These

guesses derive from the paper on saddle points of attachment by Davey
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(referred to in Section VI), and from drawings derived from observed

flow on a yawed ellipsoid by Eichelbrenner, and exhibited in the sur-

vey article b-- Cooke and Brebner in B.L.F.C.

INFLUENCE OF SEPARATION ON BOUNDARY-IAYER COMPLTATIONS

Separation limits the applicability of boundary-layer theory in

two ways. The first can be anticipated within the framework of the

theory and our previous discussion of domains of dependence and appro-

priately chosen initial data arcs. From these considerations it is

clear that we cannot "march" our computations across a separation line,
since the flow on the downstream side of such a line falls into the re-

gion cf influence of the unknown reattaching flow.

The next question is whether we can march up to the separation

line from the wake-wetted side as well as from the upstream-wetted

side. and thereby compute the boundary-layer development over the en-

tire body. The answer appears to be almost always negative. One dif-

ficulty is that we do not know, a priori, where the wake-reattachment

nodes will be. They do not in general coincide with any singular fea-

tures of an ixrotational inviscid solution (and in practice they tend

to wander temporally, at any Reynolds numbers for which the boundary

layers may be expected to be thin). Furthermore, Ihe fluid attaching

at these points, unlike the free stream fluid attaching at upstream

nodal points, has had a recent experience of viscous action, so that

we cannot ordinarily expect to find self-contained similar solutions

fcr the vicinity of the reattachment node. Finally, even if these

difficulties and those of determining the inviscid surface velocities
in the wake-wetted region could be surmounted, there remains the pos-
sibility that near the separation line the direction of dominant vis-

cous diffusion differs significantly from that of the wall normal,

thus invalidating our boundary-layer equations locally.

The second adverse effect of separation is its displacement ef-

fect, which causes the actual pressure distribution to deviate from

that of inviscid theory over a region which may extend significantly

upstream of the computed line of separation. This effect would then

render inaccurate the boundary-layer computations in this vicinity,
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and in particular their prediction of the location of the separation

line.

Though little direct evidence as yet exists, there is reason to

hope that this latter effect may be less damaging in many types of

three-dimensional flow than in two-dimensional flow. These intuitive

hopes derive from the expectations that (I) the angle of separation

may be quite small at and near the saddle points of separation (6 be-

ing small there); (2) the line of separation may be considerably "swept

back" relative to the local inviscid flow; (3) inviscid flow can to

some extent go around the regions of vigorous outflow near the nodal

separation points.

To set against this optimistic view is the observation that spi-

ral nodes of separation are often situated at the feet of tightly wound

and vigorous "trailing vortices" which may induce profound perturba-

tions of the neighboring inviscid fields.

Li:
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X. MOMENTUM-INTEGRAL METHODS

Granting the fact that the direct numerical integration of Eqs.

(1) and (2) or af Eqs. (3) and (4) will be very lengthy even if the

method is computationaily stable and well-posed, we may wish to inves-

tigate approximate methods which satisfy the equations in a (possibly

weighted) mean sense at each x and y. These are the momentum-integral

methods, of which a particularly comprehensive review is given by

Lindfield, Pinsent, and Pinsent in B.L.F.C. We m-y derive these equa-

tions directly from Eqs. (I) and (2) or Eqs. (3) and (4) as follows.

TH MOMENTUM-INTEGRAL EQUATIONS IA INTRINSIC COORDINATES

Holding x and y constant, we integrate Eqs. (3) and (4) over z

from 0 to -, and emp'loy the appropriate boundary conditions !or f and

G. For an impervious uall, we hzve

f(O) = f'(O) = G(O) = G'(O) = 0

The matching conditions are f'(co) = I (hence f(co) = 0, G'(o ) G"(c)

= 0). Integration is assisted by the device of setting

10~ -0I -

so that in

f f -o [ (1 - f')f' dz

0 0

the first term on the right vanishes at both limits.

We introduce the ' Is

6 1(x,y) E - f.) dz, 62 (x,y) m -G' dz
0 0
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(1(X,y) = ] (i- f')f' dz, 12(x,y) r (I- f')G' dz
0 

921(x,y) - -'f' dz, 822(x,y) 0-G dz
0 0

and get

-f'(O) + M +I + n e + (6 + + N +
1 ~1 1 yh2 '

812+ (n + -)(6 + 8 ' 2--V x6
h 22 

12

1 11 1 12~

1 2 '

For easy comparison with the equation of Mager (1964), we collect terms

in i and @12' and note that

n + 0 "3 L

h 2 y U

where Q is the C-component of the inviscid-flow vorticity. This al-
3I

lows a neat combination of C3 ad w3 into one term which vanishes in

many applications. Then we have

11 1 12: "( O) L 3m+ + 
+- -y -- & -+ 2K)9li.+.e(+ m6hI 1 x h 2  y x hl- -- ii 11 22

1 l3n+ 2X)812  + ( 23 4 L 2) W 6 (5)
h2y l
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and by a similar calculation on the cross-stream momentum equation

1 e21 i M 22 G 1 3m + 1 +2L-

- x h2  by x)hl 2 U6 12I
2 )2 - ( il + 822) + n 2j (6)--- 1(2- X 2 022 2

Here we have two coupled firat-order partial differential equa-

tions for the six integral quantities (61, &2, 811, 812 , 821, and 822)

and the two wall-derivatives f"(0) and G"(G).

COPATIBILITY CONDITIONS

We have also at our disposal a variety of algebraic "compatibil-

ity conditions" obtained from Eqs. (3) and (4) and from the z-deriva-

tives of these equations, eialuated at the wall (z = 0):

First ColMatibility Condition

f -'(O) m and G"'O) 2 W Lx

h h2y U

Second Compatibility Condition

wL\

f 1 0) 0 and G"" 2(--) xf"(O)

(In Lindfield, Pinsent, and Pinsent these conditions and the momentum-

integral equations are generalized to include the effects of wall suc-

tion or blowing.)

SINLY INFINITE FANILIES OF VELOCITY PROFILES

We follow Head (1961) (whose excellent survey of integral methods

for two-dimensional flows precedes the article by Lindfield et al. in
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Vol. 2 of B.L.F.C.) in calling a family of velocity profiles singly

infinite if the shape of a member profile, with respect to a linearly

stretched z coordinate, is determined by a single parameter or shape

factor. The profile, expressed in terms of z itself, then requires

two parameters, the shape factor and the scale factor.

Mathematically, we write

==-.Z fjx(x,y) zf'(x,y,z) = z-- 6(x,y)2

Gz i
G'(x,y,z) = -(x----

where x and E are the shape factors, 6 and A the scale factors.

If we employ singly infinite profile families for both f' and G',

then we shall need four equations to determine the four parameters as

functions of x and y. These are at hand in the two momentum-integral

equations and either set of compatibility conditions.

torsUsually we design the functions f I and G' so that the shape fac-

tors can be eliminated algebraically by use of the chosen compatibility

conditions, whence Eqs. (5) and (6) can be rewritten as a pair of quasi-

linear partial differential equations for the scale factors, F, and 6.

Symbolically (now following Mager's discussion (1964)) we have

A L6+ B a6 + C L6 + D L6 + E =0 (7)

+ B C= 0 (8)

where, for example,

bA(x,y) 11 A' 1 21A (6x' y-)-' etc.

hh

I
I!I
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- -Bebcre beginning a detailed discussion of solution procedures and ap

proximating expressions foi ." and G', we note the following gain in

simplicity from Eqs. (3) and (4) to Eqs. (5) and (6).

Our proposed solution method for Eqs. (3) and (4) was to employ

finite differences ir x and y, to obtain two coupled ordinary differ-

ential equations at each (x,y) mesh point. These latter were to be

solved numerically, subject to the split boundary conditions (at z = 0

and z = -

If we repeat this procedure for the set (5) and (6), we have, af-

ter fin~re-differencing in x and y, two coupled algebraic equations to

be solved at each mesh point. Clearly the computational savings are

great, even though the computational effort of the momentum-integral

method is considerably greater here than in two-dimensional problems.

WEIGHTED INTEGRAL EQUATION

For an alternative to the compatibility conditions we may use an-

other pair of differential equations to relate the shape factors to the

scale factors. Such equations may be constructed by first multiplying

the momentum equations (3) and (4) by a "weighting" factor (or factors)

and then integrating over z. These new partial differential equations

will be coupled to the unweighted momcnitum-integral equations, and the

substitution of them for the compatibility conditions will improve the

accuracy of the momentum-integral method only in return for an increased

computational effort. Head gives a number of examples, comparing the

acc'iracy of various alternative methods for some important and particu-

larly trying two-dimensional boundary-layer problems.

One's hope for a gain in accuracy through introduction of the

weighted momentum-integral equations is strongest in cases involving

a sudden change in pressure gradient (either streamwise or cross-

stream). In such cases the first compatibility conditions, which al-

ways insist on an exactly correct voiticity source strength at the

wall, may wrench the rest of the profile severely out of shape in the

region just downstream of the sudden change. This effect is worst

when we employ singly infinite profile families, which are incapable

of the sort of shape adjustments which occur in the real boundary layer
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as the new vorticity gradually diffuses Gut from the wall. The typi-

ca, sympton. of inaccuracy is a discontinuity or excessively rapid change

of surface vorticity (skin friction) and displacement thickness at the

location of the sudden change of pressure gradient. In these regions

the curve of vorticity versus z has the correct slope, but a very in-

accurate intercept, at z = 0.

The weighted momentum-integral equations ordinarily give special

emphasis to the role of convection in the boundary layer, the usual

weighting factors being f' for Eq. (3) and G' for Eq. (4). In a re-

gion of sudden pressure change these equations require a good descrip-

tion of the quasi-inviscid response of velocities to pressure gradi-

ents, and since that response is dominant in the outer regions into

which the iresh vorticity has not yet diffused, thel give a better pic-

ture of the response of "overall" boundary-layer profile shape and

thickness. Close to the wall the vorticity is forced to assum reason-

ably correct values since in a singly infinite profile family the wail

vorticity and the boundary layer thickness are usually intimately con-

nected. The slope of the vorticity profile at z = 0, and hence the vor-

ticity source strength, will probably be given poorly by this method in

the regions of sudden adjustment, but unleqs great accuracy is needed

in the velocity profile curvature, this error -may be quite tolerable.

SAMPLE SIMPLY INFINITE PROFILE FAMIJLES

Head and Lindfield at al. present good discussions of the way in

which profile families can be generated by using polynomials, tra.is-

cendental functions, or numerical functions of the stretched normal

distance. The usual procedure is to make a linear combination of two

functions, one of which is selected to give a fair approximatlon to

the profile at attachment points and in tit neighboring regions in

which the streamwise pressure gradient is favorable and in which the

inviscid streamline curvature has the same sign as at attachment. Sam-

ples of such "first" functions, from the work of Timman (1951) and Zaat

(1956) areI



JI
i -50-

- = ecf 2Qe

z

which satisfies

f =(0) 0, f-(0) = .. " ,, f '(O) = 0

f~~) 1, f/ f&J1  f () =0

and

G (Y) 
-- Ye

- Y 2

_ z

which gives

%1

G'(o) = 0, 1,) o

G ¢ ) G () (-¢nl) H = 0

These functions, which fulfill the boundary conditions on f' and G',

are given in Fig. 5. The fact that fl (0) = GI (0) 
= 0 has an impor-

tant bearing on the algebraic simplicity of the subsequent theory when

the first compatibility equations are used.

The second component of the profile must now vanish at z = 0 and

z = , but can otherwise be chosen arbitrarily with the special objec-

tive of imitating the profound changes in profile shape which accompany
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Fig. 5 -- Zaat and Tinian's profile functions.

the onset of adverse streamwise pressure gradients and changes in the

sign of the inviscid streamline curvature. To achieve this objective

in both f' and G', Zaat and Timman propose the function

f i (erfc 0 - +

and let G' be this function of T. This gives
2

f'(o) = 0, f(o) 2 f (0)

fl(-) 0, f" f/l f 0

2u2 2 2

Thus we could write
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f'(x,Y,z) =f/ (4)-xf/(*

and

I L
G 1(x,y,z) A AG' ( FJ- G' ":

0 1 vi 2 v~

I It can be readily verified that both of these combinations can describe

I
"two-sided" as well as "one-sided" profiles, as a result of variation

in X and Z.

The extra coefficient A is permissible as far as satisfactiono
of the boundary conditions of G't is concerned, and may (I think) be

employed to get the calculation started in the vicinity of an attach-

ment point. In such a region exact cross-flow profiles are given in

terms of the similar solutions of Howarth, being

= g f t
: ' G =

where x, y, c, g1 and f' are as defined in Section VI. While the func-

tions g' and f are universal in the neighborhood of the attachment

point, we see that G1 will vary with x/y along the initial data arc.

Since Zaat and Tiuman's G" has about the same shape as g' - f', we

might take Z = 0 on the initial data arc, and let A = (xo/cy + cyo!xo)-1

DOUBLY INFINITE PROFILE FAdILIES

While the singly infinite families of profiles which are composed

from Zaat and Timman's functions may assume at least qualitatively rea-

sonable shapes in interesting problems, particularly if we employ the

'Igentler" but rore tedious procedure with four integral equations and

ignore the compatibility conditions, they "o not have enough flexibil-

ity to permit accurate i-presti.Cation of velocity profiles, such as are

needed in attempts to predict separation or laminar stability. Head

and Lindfield et al. show how this situation may be improved by the

1
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introduction of doubly infinite profile families, which are character- I
ized by two shape factors and a scale factor for each family.

It two new shape factors are introduced, then we need six equa- 2

tions in all. These may be the two momentum-integral equacions, two

weighted momentum-integz-5l equations and the first compatibility con-

ditions. Obviously other cambinations can be used, and Head has tested

some of these for two-dimensional flows. if one has decided to use the

four integral equations foi singly infiltite profile families, not too

much extra work is involved in going to doubly infini.e profile fami-

lies.

In fact, for three-dimensional boundary layers, one might expect

that the f' and G" profiles could porsibly "share" some parameters,

so that doubly infinite families could be used without the need for

more equations. That is, we might be able to extend our profiles to

=fl - xf- Z

and

G' A G' (;I XG I

but it would require considerable experience to discover what, if any,

expressions for f' and G' might make this scheme profitable.exresinsfo 3 G3

SOLUTION OF THE MOMENTUM-INTEGRAL AND ENERGY-INTEGRAL E2UATICNS

Even though the momentum-integral equations can presumably be

solved numerically with much less effort than the full boundary-layer

equations, they have seldom been applied to truly three-dimensional

problems. The exceptional examples seem to be discussed by Zaat

(1956) and Eichelbrenner (1957), and both of these employed solution

methods adapted only to regions with weak cross flows, Lindfield,

Pinsent, and Pinsent (1961) give a general discussion of the use of

weighted integral equations, but work no examples in that publica-

K -
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tion. Only Tir-an (1951) and Mager (1957) appear to have studied the

characteristics of the partial differential Eqs. (7) and (8), and no

study seems to have been made of the characteristics of the fourth-

order system of two momentum-integral plus two energy-integral equa-

tions. I have made various attempts to fill this gap in this Memo-

randum, but conclude that the topic is too lengthy and too specific

to be worth including.

Derivation of Weighted Momentum-Integral Equations

If we weight Eq. (3) by fV and then integrate over z, the terms

on the right-hand side contribute the derivative terms in the stream-

wise-energy-integral equation. These are

x 1 ll 1 i 12+
h2  y

where

f dz
0

£12 G'G - dz
0

If we try, following Lindfield et al., to weight Eq. (4) also by

f', we find it is impossible to extract the differentiations in x and

y from under the integral sign. (I can only conclude that Lindfield

et al. aucceeded in doing this by virtue of an error in calculus.)

The resulting equation would thus be unbearably tedious to employ.

However, if we weight Eq. (4) by the velocity G', no such difficulty

arises. The derivative terms are

x (1 'e21 + L a"22I

2\h 1 ax h2 ay
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where

2 ""-f f'G' 2 dz

C22 -- G' dz
0

The momentum and energy integral equations may thus be summarized

as

11.el 1 ae12L + algebraic terms 0hI ax h2  by

1 6821 1 a"22
+ -- + algebraic terms = 0h Ox h2  by

1 Ii 1 ae1 2
- + - + algebraic terms = 0

hI ax h2  by

1 21 1 ae2 2
- 21 + -- 2 + algebraic terms 0hF ax h 2  ay

By using the assumed profile families, either singly or doubly

infinite, we can express all quantities in these equations as func-

tions of the two scale factors, 6 and A. and the shape factors (two

for singly infinite families; four for doubly infinite families). If

we employ doubly infinite families, we assume herewith that appropri-

ate compatibility conditions have been employed to eliminate two of

the shape factors in favor of the other two shape factors and the two

scale factors. We call the remaining shape factors X and E. Then,

in the case of greatest generality (with shared shape factors), we

would know
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S11 = 811X Z)' 1-2 812 ( , ,X,E), etc.

we would write

69e
a1x ax 6z 1

and similar expressions for the ocher derivatives. The resulting four

equations for 6, 6, X, and E can be abbreviated by use of an index no-

tation (summation over repeated indices) as

u. +0, au 1,2, 3, 4 (

Sj ax ij ay lj 1, 2, 3, 4f

We identify

6, u2  = , u3  = , u4  = I

e21 21 ae21 ae21

a. = h

1 a

ae21 3s21 be21 6621

66 M ax

and
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69 6 be -, 0e

S22 °22 °2222

1bi. = h
12 12 12 12

dx

U 22 22 bc22 22

Difficulties of Further Discussion

One can easily carry on formally, writing expressions for the

~characteristic directions of the set Eu. (9) to show that there are

~either 0, 2, or 4 real characteristics at each point, and to idi-

- care plausibly that in cases of weak cross £low all real characteris-

= : tic slopes are close to that of the inviscid streamline. The essen-

tial arbitrariness of the momentum-integral methods precludes more

precise statements for the case of general cross-flow magnitude. This

makes the nuuziri..al values of the coefficients ai and bi a result

ij h 2

not only of physical necessity but also of personal choice (exercised
in the parafftrization of velocity profiles). Furthermore, if codi-

tions exist in which some of the characteristis are imaginary, the

criterion for such conditions does not seem to be expressible in terms

of a simpl2 physical concept (such as that of subsonic versus super-

sorbic flow in gas dynamics). A feeling for the behavior of the char-

acteristic curves appears to come only from extensive experience with

actual calculations, and this experience does not yet exist.

Difficulties of Applicat-ion of the Method of Characteristics

While in principle integration alon characteristics (when these

are real) is the preferred method of solution of equation sets such as

Eq. (9), numerical execution is awkward (leading to either poor accu-

racy or an excessive amount of computation) when the characteristic
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lines all have nearly the same slope, as in the weak cross-flow case.

Such cases beF for a different scheme of approximation. Mager (1957)

amplifies these points some-what.

Furthermore, although they are described in principle by Courant

and Friedrichs (1948), numerical procedures become very tedious whe:

as many as four real characteristics exist, as may be the case for set

(9).

LI

!I
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)a. EF'IENTS OF C(WPRESSIBILITY I
In keeping with our announced intention to concern ourselves pri-

marily with geometrical rather than thermodynamical complications of

bour-dary-layer theory, the following comments will be very brief. A

more comprehensive survey of the formal aspects can be found in Mager's

review article.

Compressibility can give rise to, or modify, secondary flows in

three essential ways. One is seen in the onset of differential "buoy-

ancy" accelerations, which arise in a variable-density boundary layer

under the action of velocity-independent force fields (such as centrif-

ugal or gravity fields). A sample problem would be to determine the

boundary layer on a strongly heated body that is moving slowly in a

horizontal direction. A survey of laminar flows with body forces is

given by Ostrach (1964) in the same volume which contains Mager's sur-

vey. A second is easily visualized in terms of the simple quasi-in-

viscid force-balance explanation of streamline curvature in a three-

dimensional bcundary layer. Since it is pu2 times the geodesic curva-

ture- "ich (nearly) balances the transverse prt--:re. gradient, the cur-

vature of boundary-layer streamlines will be increased by processes

such as viscous dissipation, which reduce p, and decreased by process-

es such as extreme wall cooling, which increase p. In an article on

the applicability of Stewartson's transformation to three-dimensional

boundary layers, J. C. Cooke (1961) deduced the rule of thumb that if

(a) Pr - I, (b) p - T, (c) cross flows are almost negligible, (d) the

wall is insulated, and (e) the external flow Mach number is moderate,

then the compressible-boundary-layer flow corresponds to an incompres-

sible flow over the same surface, but with all pressure gradients en-

hanced by the factor I + (y - 1)M2/2. On the other hand, for the

boundary layers on highly cooled walln of yawed blunted cones in hy-

perp'onic flow, Vaglio-Laurin (1959) has shown that a weak-cross-flow

assumption, which decouples the streauvisemomentum equation from the

cross-flow momentum equation and allows the former to be reduced to

two-dimensional form by Mangler's transformation, is often justified
2

uy the near.'constancy of pu across the boundary layer. The third and
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4 least-studied way in which compressibility may engender secondary flows

involves the displacement effect of the boundary layer. While Lt has

been possible to incorporate this effect fairly successfully into the

theory of two-dimensional hypersonic boundary layerss the only litera-

ture dealing with three-dimensional cases (other than axisymmetric

cases) appear to refer to corner-flow, or boundary-region, problems.

While we cannot elaborate here on the subject of displacement ef-

fects, we shall state the definition of displacement thickness of a

three-dimensional steady boundary layer, following Lighthill (1958).

We refer to Fig. 6, which attempts to show two surface streamlines of

the inviscid flow, denoted by 11 and 1 + dq in intrinsic coordinates,

and originating at a nodal point of attachment, 0. Ove.- each of these

streamlines we sketch a "wall of surface normals," the two walls meet-

ing over 0. At the point (§,q) we erect a rectangle with base h2 dJ

along the = constant curve, and height 6 along the local normal

(C-axis).

0

4.Fig. 6 -- Control volume which defines displacement thickness.
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We may define the displacement thickness, 6., at , by equating

the inviscid mass flow through the rectangle, peUh2 dt F,, to the mass

flow "displaced by boundary-layer action" between the attachment node

and , . Part of this displaced flow is accounted for by the deficit

of streamwise flux in the boundary layer at g, " This deficit, reck-

oned as a positive itmber, is h2 dl Jr (Pe1 - pu) dC. The remainder

of the displaced flow has leaked out through "sidewalls" of normals,

between 0 and §, due to boundary-layer cross flow. Between t' and

§' + dt' this deficit, again reckoned as a positive quantity, is dlj

6/6 ChI d ' Jo pv dr], and the accumulated deficit between boundary-- I
layer attachment and the point of interest is

df [h,(F 1,"1) p( ')v(§') d] dE"
0 - "0

Thus we get

~~~,,a L r 0,
PeU6 h2 di h2 d O (pU -pu) dC + dq [h h

Introducing the "displacement integrals of the primary and secon-

dary flows,"

61. r(.- }<, d
0 Pe

and

6 2 v d C
62 .1

we get
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6* [P 61+pU flV l 6 2 d§'
e 2

In closing these brief remarks, we enter the obser-,ation that

transformation methcds, intended to carry com .ressible-flow, problems

over into p.eviously solved incompressible-flow problems, appear to

play a relatively minor role in the theory of three-dimensional bound-

ary layers. Only in exceptional cases (e.g. Poots' (1965) analysis of

the compressible stagnation point boundary layer) is an exact compres-

sibie-incompressible correlation established, while compressibility de-

-troys the very feature (i.e., the independence principle) which under-

lies many of the available incompres3ible solutions.

-1



I

-63-

MI. STABILITY OF THREE-DIMENSIONAL lAMINAR BOUIMDARY lAYERS

The theory of hydrodynamic stability of three-dimensional boundary

layers is reviewed by Stuart on pp. 549-558 of Chapter IX of L.B.L. An

additional important survey is made by Brown in Vol. II of B.L.F.C.

The starting point of the usual theory is stated by Stuart (in

Gregory, Stuart and Walker (1955)) as follows:

"At a local station in the flow, the equations of sta-
bility, with certain approximations, were found to resemble
formally those for two-dimensional flows; the relevant mean-
flow velocity is the component in the direction of propaga-
tion of the disturbance at that particular station.fi

If we assume that the spectrum of available infinitesimal distur-

bances is isotropic in direction, the stability theory for two-dimen-

sional flows can be applied to the projections of the undisturbed ve-

locity profile on various planes passing through the local wall normal,

to find, for example, the minimum critical Reynolds number as a func-

tion of the angular orientation of the plane.

The most prominent result of such a study (examples are given by

Brown and by Gregory, Stuart and Walker (1955)) is the destabilizing

influence of secondary flow. In its presence, the velocity profile

inevitably exhibits an inflexion point in many of its projections, as

shown in Fig. 7.

Inflected profiles (see for example, Schlichting (1960) p. 387)

have lower minimum critical Reynklds numbers and much larger areas of

instability in the wave-number versus Reynolds-n,ber plane than do

profiles without inflexion. This fact partly determines the appropri-

ate methods of analysis of the stability equation (see Brcwn (1961)).

An infallible rule of thumb to indicate which projection of the ve-

locity profile has the lowest critical Reynolds number does not seem

to exist, but from examples shown by Brown it seems to lie close to
0the cross-flow (§ 90 ) profile.

This assumption has recently been criticized by Lilly (1964)
in a study of Eckman layer stability in a rotating tank.
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Fig. 7 -- Projections of the velocity profile

on planes through the normal.

A projection of unique importance is that in which the inflexion

po.nt coincides with the crossover point (where the projected u is ze-

ro). Such a profile can support a stationary neutral disturbance

(phase speed Cr = 0) whereas che usual neutral disturbances of two-

dimensional boundary layers are traveling waves with C > 0. (See,~r
for example, Fig. 16.12, p. 397 of Schlichting (1960)). Such sta-

tionary disturbances, having somehow appeared at particular locations

on, say, a swept wing or a rotating disk (Gregory, Stuart and Walker

(1955)), manifest their continued presence by a street-like pattern

made visible by china-clay technique even substantially upstream of

transition. Stuart's theory successfully predicts the "sweep angle"

of these streets (which lie at right angles to the projection plane

in which the inflexion and crossover points coincide), but gives

poor estimates of the observed wavelengths. Eichelbrenner and Michel
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(1958) have made observations of what may possibly be the same phenom-

enon occurring on a flattened ellipsoid. Finally, it has been specu-

lated that even turbulent layers may be subject to this sort of insta-

bility, evidence for which is the regular streets of Sargassum or foam

occasionally arrayed over large areas of the ocean surface (Faller,

1964) or by cloud rows in the atmosphere (Faller, 1965).

-p
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XIII. ANSITION TO TURBULENCE

While it is known that transition to turbulence of the laminar

boundary layer does not take place by simple amplification of two-di-

mensional disturbance waves, Smith (1956) was able to find a useful

description in terms of stability theory parameters of a correlation

of smooth-wall, low free-stream turbulence transition data made by

Michel (1952). An attempt to extend the Michel-Smith transition cri-

terion to make it applicable to three-dimensional boundary layers with

weak cross flows has been described by Eichelbrenner and Michel (1958),

and tested by them with china-clay observations of transition on a

yawed ellipsoid of revolution. Because the comparison seemed less suc-

cessful than one might have expected, particularly along the flanks of
the ellipsoid, they then tried a second transition criterion, that of

Owen and Randall (1952 and (1953), which appeared to be related to the

instability of the secondary flow.

Owen and Randall's criterion is derived from experiments on yawed

wings, and does not pretend to any great generaltiy. In its present

state of development, it simply associates transition with a single

critical value of a Reynolds number based on boundary-layer thickness

and the maximum value of the cross-flow velocity:

Re 200 - 300tr Vmax v

where the range of values presumably comes from some as yet unexplained

dependence on profile parameters.

When Eichelbrenner and Michel plotted points of v 6/V - 300 on

the surface of their ellipsoid of revolution, they found much better

agreement with the observed transition curve at overall body Reynolds

numbers U L/v - 2 to 6 million than they obtained with the Michel-

Smith criterion. Of course, only the latter criterion could apply on
lines of symmetry where v - 0, and in the vicinity of such lines it

~max
might be presumed to be the preemptive criterion,

Finally, Eichelbrenner and Michel remark that their obseryed tran-

sition lines frequently exhibit "tongues," the number of which appears
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to increase with increasing Reynolds number. Similar tongues show in

china-clay pictures of transition on swept wings, where they presumably

develop from the stationary, swept laminar disturbances.

While the "tongues" of Eichelbrenner and Michel may be of a simi-

lar origin, the distances between them are not negligible compared to

radii of curvature of the ellipsoid itself, so that one of the basic

approximations of the standard "plane-flow" stability theory cannot be

satisfied.

No detailed studies of the mechanics of transition of boundary

layers with cross flow, comparable to those made by Schubauer, Kleba-

noff and others for the case of t-wo-dimensional undisturbed flows,

seem to exist.

-?I
I
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XIV. THREE-DIMENSIONUL TURBULENT BOUNDARY LAYERS

On exterior aerodynamic surfaces, in rotating machinery, and in

natural flows (rivers, the atmosphere, etc.) one has to deal with

three-dimensional boundary layers that are turbulent. The theory of

such boundary layers is only very slightly developed, and perhaps be-

cause of the formidable aspect of even the laminar-flow differential

equations there has been almost no work along deductive lines, utiliz-

ing ad hoc models of eddy diffusivity or mixing length to provide the

missing link between Reynolds stresses and mean-velocity derivatives.

Exceptions can be found in the meteorological literature, but they

typically involve special assumptions (negligibility of boundary-layer

growth rate or of horizontal mean-flow convection which set them fairly

far apart from the main-stream of boundary-layer theory.

Most studies of turbulent three-dimensional boundary layers have

thus far taken an inductive and empirical approach, seeking out ways

by which measured mean-velocity profiles can be represented parametri-

cally, in hopes that momentum-integral methods can be devised to pre-

dict the evaluation of profile parameters for given bodies, surface

conditions and external-flow velocities.

TIME-AVERAGED BOUNDARY-lAYER EQUATIONS

The boundary-layer approximations to the time-averaged Navier-

Stokes equations, for the case of constant fluid density and viscos-

ity, and for a steady but three-dimensional time-averaged flow, may

be derived by the following sequence of assumptions.

The boundary layer is thin by comparison with any radius of cur-

vature of the body surface, so that we may still assume h3 = 1,

hl!C = bh 2 /6C = 0 in the region of interest. With these simplifi-

cations the instantaneous momentum and continuity equations can be

combined to give

2 . ... . .
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au .l (u2) +L L 2 2Cuv + h2--h2 (uw) + (u - ) + 2uv I

1 . 2 212 u  other viscous terms which
+ A+ -- wR 2w3v V - + are linear in the velocity)

~ 2 3 22 components

1 l_ l __( 2 +-(w - uV)( 2

"-t+ hL L (vu) + Lh 2 ) +1 6 (vw) + (v 2  u2 + 2vux 2

at hIb h 2 al 6C21+ 2

+ L- A + R w 2R2) + 2w3u = qb- + other linear viscous terms

and

3w + L (wu) + L
Bt h h 2 am 6

+ (6 + p w2 R "2 V +other linear()w

+~,ac-wj2wvwu pv 2~ viscous terms/

In these equations

h 2  and 2 1 h 2

are the geodesic curvatures of the surface coordinate curves.

Into these equations we now introduce the decomposition of tur-

bulent variables into mean and fluctuating parts, and then average

over time. For example, we write u = u + ul, with the understanding

that uu, u 0. Then

-2 -2 ,uu2  -2 ,2u =u + 2uu + u =u + u

_) . 1
f



-70-

We assume that au/6t = 0. To save space, we simply imagine this oper-

ation to be carried out.

We now assume that the thinness of the layer implies that if I/hI

/ (-) and 1/h 2 8/2q() are taken to be of order unity, then B/C)

is an order of magnitude larger (say 0(L/6), where 6/L << 1). The

q. .... iy In () may be any averaged property of the velocity field,

like u or (u12). For the moment we use this assumption only to estab-
lish tly. fact that the mean-flow viscous terms (e.g., Va2u/bC2), re-

tain the same form as in a laminar boundary layer, and to establish,

from the time-aio'eraged continuity equation, that if J and v are taken

to be of order unity, then w is of order 6/L << 1. With these approx-

imations the time-averaged boundary-layer equations become

(-2)) + -2 - 2) 2

(U ) + h2 + (

2' I + h2 - 2

2uvK RL (Ai~2 2 v2
1 hp 2  'W

I i 1.

h2-1

+-2 2+a +--7 h2  CU p "7 +

-2 - -2
(1 u +A v + (~+(v u)Kt

1h 1 22

2G+ (A +P-- R + + 2  U
h2 11

2-
~~( L2) L77 1v 7w2

-v u )K -~ 2v

2I
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and

- [ ,,'u') 2 , w + w

To make further simplifications we -mst have additional experi-

mental knowledge, regarding the typical orders of magnitude of the

kinematic Reynolds stresses (e.g., u , u 77) and their derivatives.

This information is not directly available for three-dimensional tur-

bulent boundary layers, so we shall have to employ a liberal amount
2of guesswork. We should note with particular care that while v' and

u are probably roughly independent of our choice of surface coordi-

nate system (in a two-dimensional boundary layer, streamwise fluctua-
-2tion and cross-stream fluctuation are roughly equally energetic), v

-2and u do depend on this choice. We shall proceed in intrinsic coor-

dinates, and shall assume that all kinematic Reynolds streas compo-

nents are of the same order of mag i-i tude, -'hi'h we estimate (from Kle-

banoff's data for a zero pressure gradient t-o-dimensional boundary
2layer) to be no more than 1 percent of the local U . Thus we shall

drop 1/hI 1/B (7v 7 ) and 1/h2 a v/ (v') compared Lo 6/6C (v-7-7) in

the 'I-momentum equation, and make corresponding simplifications in the

other equations. The C-momentum equation can be integrated over C to

give

PI) + w2R2  P w w + 2 u Wlv) dC
p 2 0(1') , (W2  1

0

With the assumption that any coordinate spin is moderate, so that

wU6 is at most of order 8/L << 1, we can drop the integral, Then, whenIP /6 and oP /al 4re evaluated from the inviscid momentum equation, we
0 0

shall be comparing b/? (U 2) or Uzx with 6/b w"2, and we assume that

the fluctuation term can be dropped in that comparison. Substituting
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for 6P /6 and P /3,1 in the §- and m1-momentum equations, and using

the continuity equation again, we find the forms

u au-U U+2~u+ u ;, +'.-

h I 6§ h I  h 2  *2 + 3

= aU (uw ) - (u'- v'f - 2u' l  (10)
C2 a 2

and

S_ v + h -2 j,: (1+ ) 2+Uu

a ~ v v, ( )_(--" 2)K{ - u-rv-y(n
aC2  acv,_u, 12

We reserve judgment on the importance of the last two terms in

each equation until we have integrated these equations over C.

MOMENTMD-IINTEGRAL EQUATIONS

We note the boundary conditions at C = 0,

u 0 (no slip)

w = w (given blowing velocity)

7 v--7  = 0 (for a smooth wall)

L, -ur-7MUc1
2nf

and



-73-

V U- C (at a rough wall)

2

At C =

U = U, v = 0

- = v

We define the integral thickness as

L61  Fw ~dC, Lb2 d
0 0

-2
LBl . I L02 - j d

o oU

L9 I - d(, LB =  [- dO = LI + L

0 U

Next we add (u - U) times the time-averaged continuity equation to (10)

and v times the continuity equation to Eq. (11). This gives

uu u i)( L ++ [

\ " ) +hi -'U)] u+u - h23 h2U)-

1- 1 2 2-dC, L

+ [(u - U)u - v ] 2 + [(u - - 22v v

CO 2 12 ~ u] 1

-v 2C 2AVK

r N6 (u--)w I +u' NO -') -) + ,u--ra
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and

1 12 a 2 + (U2 -2 -

+ () W (U vw)x 1 2-uv 2
a 2  a 2 r2

All terms will now give finite values when integrated from - 0 to

C = (In these integrations U and hi, h2 are taken independent of

S.) After division through by U a-4 introduction of the symbols

L= L

(and other symbols such as m, n, X, , as used above), we obtain

I 1 81 1 812 Cfl

-e be C f

I- + y  2 hlX [m(2811 + 61) + (e11' " - FII)]
h1 l 112 y 2 1x 1

2X3L 2w + 013)- F-2 + 0 + .L62 - I
h2 y 12 U 12 U 2 U

and

1 221 + L 22 f2 2
a x 221hI  h 2  y 21 hx 1 12

h2y [( 22 + 611 + F11) + n613

2fL (2w 3+0+-U8 22 ( 3) 6
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Note: Except for the presence of the blowing velocity and the "fluc-

tuation integrals" FII and FI 2 , these equations agree exactly with the

laminar flow Eqs. (5) and (6). The apparent differences in their re-

spective right-hand numbers came from the fact that in our laminar-flow

treatment we have measured 6's and O's in units of z, where

- -fU/ux(C/L), while in the present treatment they are measured sim-

ply in units of C/L. This meana that

0 W L. .

ell,15x 11 ai,21 + I 61l,21

ay 12, 22() a 12,22 2 12,22

Similarly we can show that

Cf
81 1 (z) 2

In their present form (with 6's and 8's measured in units of C/L) and

with the suction-velocity term w /U, the equations ar- easily special-

ized back to their familiar forms for two-dimensior. boundary layers

(h i m 1, K - = 3 - 0). Then the streamwisc momentum-integral

equation becomes

dcll C
12 11 61 m__ = -i -(28l+61) + --

ELIMINATION OF THE FLUCTUATION !NTEGRALS

If we can make order-of-magnitude estimates from data on two-

dimensional boundary layers, it appears as though F1 1 may not exceed

2 percent of 11, and hence it may be dropped wherever the two quanti-

ties appear as a sum or difference. (This relies on 8 + 8 being
11 22

not much smaller than 11, an assumption which could only be violared

in case of extraordinarily strong cross flows.)
i 12
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We cannot so decisively dispose of FI2 by comparison with 812 or

since it is hard to decide on typical orders of magnitude for

either quantity. Since further development of the theory would be

nearly impossible in a case in which FI2 was important, we shall ar-

bitrarily ignore it. The equations which we shall discuss further are

4 then cast entirely in terms of integral quantities which can be de-

rived from assumed profiles of u and v and the friction coefficients

Cf and Cf f.1 2

COUNT OF UKIOWNS AND EQUATIONS

If we accept the approximations whereby "fluctuation integrals"

such as F1 and F are neglected, we are left with two differential
11 12

equations for the determination of seven unknowns (five independent

integral thicknesses and two skin friction coefficients).

For subtle reasons which could hardly be anticipated before an

examination of experimental u and v profiles (see Rotta (1962) pp.

70-73 and pp. 172-181), the compatibility coiditions at the wall do

'not provide useful additional relations between the 6's, 's, and say,

the given pressure gradient.

Additional weighted momentum-integral equations can of course be

formed, but we can see at a glance that these will involve important

integral thicknesses in which the Reynolds stresses appear in the in-

tegrands. For example, the u-weighted §-momentum equation will involve

the thickness

S (u'w') d
0

which describes part of the conversion of kinetic energy from the

"mean-flow budget" to the "fluctuation budget." Since the Reynolds

stresses are harder to measure, with acceptable accuracy, than the u

and v profiles from which the 6's and 0's are computed, there does not

yet exist an extensive empirical base for work with the weighted inte-

gral equations. If we abandon Lhem, we are left to devise five addi-

tional relations between the 6's, 6's, C 's and our given parameters,

by direct examination of experimental data.
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EMPIRICAL GENERALIZATIONS ABOUT TWO-DIMENSIONIL TURBULENT BOUNDARY-

LAYER PROFILES

In many cases, especially those with weak cross flows, we expect

the streamiise velocity profile to be quite likc those which have been

so extensively studied in flows possessing a carefully cultured two-

dimensionality of the time-averaged state. The properties of such

flows have been reviewed in detail recently by Rotta (1962) and Schu-

bauer and Tchen (1959). We are mostly interested in the empirical

generalizations for u which are reviewed by Rotta on pp. 156-166. In

particular, we select for further discussion the doubly-infinite family

of u profiles given by the wall-wake model of Coles (1956).

The Wall-Wake Model of u Profiles

According to this model, which though frankly empirical and ap-

proximate, is capable of fitting experimental u profiles with remark-

able accuracy throughout a wide range of both favorable and adverse

pressure gradients, the profile is constructed by a linear combination

of two universal functions. One of these, called the wall function or

the law of the wall, relates u only to the local friction velocity,

u p, the kinematic viscosity V, and the normal distance C, pro-Tw

vided that the wall is smooth. For nonzero skin friction, this law

dominates the u profile over some finite range of C, and within this

region the local pressure gradient has no direct effect (within 
the

broad range of conditions on which the law is basea). By dimensional

analysis, this law can be written

u f(u

When the wall is rough, and if the roughness elements possess geometri-

cal similarity in their shape and spacing so that they can be charac-

terized by a roughness height k, the law may be generalized to

Ir
-

I
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Uk
f f 1 u,

In some cases, particularly those involving favorable pressure

gradients or large Reynolds numbers, the wall function may suffice to

describe u over a sufficient range of u CIv so that, for u f/u ;50,

it assumes the famous logarithmic form

f T > 50) I -- + C• UV K V

ulth K = 0.41 and, for smooth wills, C - 5.0, as foqnd from experiment.
When this is attained for a rough wall, the effect of roughness is en-

tirely in the "constant" C.

+f C T r, roughness shape > 50, C > k r)1 K V V (T V r

The dependence of C on u k /v is independent of shape, but for
T r

Nikuradse's sand grains, u k IV . .5 gave C = 5.0, or smooth flow,
T r

while for u k v Z 70, fully rough flow with C - C (shape only)
Trr r

(1/K) Ln (u k r/v), so that u/u T (/K) 2n (C/kr) + C (fully rough).' T r
The direct influence of local pressure gradient and boundary-

layer thickness enter u through the second, or wake, component of the

profile. The form of this was discovered by Coles (1956) by a proce-

dure indicated in Fig. 8. Only profiles for which the logarithmic

portion of the wall law was empirically well established could be

used initially. The wake component was determined by subtracting the

extrapolated (logarithmic) wall law from the measured u, and a defi-

nite procedure for defining thea boundary layer thickness 6 was estab-

lished (as seen in Fig, 8). Ideaqlly u as well as u should be direct-

ly measured in the experiment.

The experimental residual, u - u f, was discovered by Coles to

have a universal shape in boundary layers under a free stream of suf-

ficiently low (< 0.1 percent) turbulence level. With 6 defined by
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3 0 r_

-u ridpoint Measured points
U

Tangent to data,
parallel toI

Line !I to I& II
half-way between

Logarithmic portion ol the

10 law of the wall

,-This valu ofC=6by
i assumption0 I.,

(actual measured distance from wall,

plotted on a logarithmic scale)

Fig 8 -- Law of the wake.

Fig, 8, and with a universal wake funccion W(C/6) normalized to run

from 0 to 2 as goes from 0 to 6, Coles' complete wall-wake model for

u is given by

u u
£= f( 0 y 6

T I
In this the dimensionless parameter rT( ) assumes values determined by

the local pressure gradient and prior boundary-layer history, and K

is again the von (.arman constant. We can re-express it in terms of

the given U (instead of the unknown u ) as

u f \f + w L/Cf L)

0 )-
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We see that this forms a doubly-infinite family of profile shapes,

governed by the three dependent-variable parameters 6/L, Cf, and n and

the two given parameters bL/v and k /L. By setting = 6 we get one
r

relation between these parameters, namely

Ik f 1[2vL V _S () , )vL] K

This difficult implicit relationship is untangled graphically by Rotta

(1962) on pp. 168 and 169 (for C = 5.2).

The integrals for 61 and 1 can now be carried out by noting

that i W(O) do = 1, and ignoring deviations of f from its asymptotictha 1o 1
logarithmic form, so that fo af / d(C/6) 1. We get

Cf and

6 C f (1 +K T) 
2

811 =-C - m+p2
K

where, according to Coles, a = 1.600 and = 0.761.

The "Missing Relation"

When 61 and 811 are eliminated in favor of 6, Cf, and ir, the mo-

mentum-integral equation plus the free-stream relation (boxed above)

give us two equations for three unknowns.

Neither of these equations postulates any direct local connection

between pressure gradient and profile shape, and we might hope to find

something like this empirically, perhaps in the form of a correlation

between TT and 6i(ap/a)/ o . Each of these quantitie6 is constant

(Coles 1956, Clauser 1956) in so-called equilibrium or self-preserving

boundary layers, so that a few pointit on a correlation curve are readily
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available. Of course, it is naive to hope that a local correlation

of this type might hold very generally in boundary layers in which n

changes radically with §, but even a rough correlation would probably

lead to results as good as those obtainable with other popular meth-

ods--e.g., that of von Doenhoff and Tetervin (see Schubauer and Tchen,

1959). Good accuracy would be expected in favorable pressure gradients

(where u is small, ranging between zero in converging channel flows to

0.55 with zero pressure gradient), and poorer accuracy would be ex-

pected as dp/dx becomes increasingly positive and separation is ap-

proached. In the latter case the detailed history of boundary-layer

growth is bound to play an increasingly important role, even more so

than in laminar layers. In the extreme, Clauser (1956) discovered

that the profile in strong adverse pressure gradients was so sensitive

to upstream history that it could not be effectively manipulated by

changing the local 6p/6§. This phenomenon is occasionally referred

to as instability, in the sense that a small local change in 6p/) (or

in wall roughness) may produce a downstream effect which grows, rather

than diminishes, with increasing downstream distance.

Finally, we note with Rotta (1962), p. 199, that the "missing

relation," as we have called it, must be an independent empirical dis-

covery, and that it cannot be obtained by any manipulation of the

equations (momentum and continuity) and profile information (U(C/6,

6/L, Cf, 1)) we already possess. For example, even though Coles has

shown than the wall-wake model can be applied to the momentum equa-

tion, and accurate values of Reynolds stresses computed, the result-

ing stress profile cannot be inserted into (say) the energy integral

equation to obtain our missing relation. What results from such a

procedure is an identity (I = 1) and not an independent equation.

EMPIRICAL MODELS FOR THREE-DIMENSIONAL TURBULENT BOUNDARY-LAYER

PROFILES

We found in our review of the two-dimensional turbulent boundary

layer that there exists a profile model, the wall-wake model, which

accurately fits a very wide variety of profiles by use of two univer-

sal functions and three parameters, even though we do not yet possess
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an effective way of predicting these parameters. We now wish to see

whether in the three-dimensional case we can go equally far, discover-

ing widely applicable models for both the streamwise and cross-flow

velocity profiles. As might be expected from the comparatively small

amount of study yec given to three-dimensional boundary layers, tb2

answer seems to be "not yet." Two major proposals, both of which seem

to have some experimental support, have been made; they agree in some

cases and disagree in others.

Generalization of the Wall-Wake Model

In his 1956 article Coles suggested a straightforward vector gen-

eralization of the wall-wake model into

uU u kf

where f and W are the same universal functions as in the two-dimen-

sional case, and TT (C,l) has become a tensor parameter, which operates

on the friction velocity to beget another vector tangential to the

wall, The friction velocity vector has the direction of the skin fric-

tion vector, and its magnitude is, as before, u 7

Experimental testing of this model requires accurate measurements

of both magnitude and direction of velocity and skin friction, and it

appears that instrumentation employed so far is somewhat cruder than

that used in two-dimensional flow studies. Be that as it may, the

test would in principle consist of two steps: (a) a check of the par-

allelism of the wake-component vectors, as visnalized in the polar

plot of Fig. 9; (b) a plot of the wake-component magnitude versus .

If the data pass the first test (parallelism of wake-component vec-

tors) we then see whether the amplitude of the wake component can be

described by a universal profile function. Finally, if this wake pro-

file shows the symnetry of W(C/6), 6 is easily determined, and so is
-4

the amplitude of the vector TT u T

Since 1956, various experimenters have compared data with the gen-

eralized wall-wake model; while none of their comparisons quite live up
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Direction of skin friction

Wall-component

Wake-component 
vectors

u fl

Direction of

inviscid stream

Measured velocity vectors

Fig. 9 -- Projection of velocity profile on tangent plane.

to the conditions we have outlined (in particular, u is almost neverT

Sirectly measured) they appear to provide fair confirmation of Coles'

ideas about the wall component, and fair to poor confirmation of the

proposed behavior of the wake component. (See Perry and Joubert

(1965), Hornung and Joubert (1963), and Johnston (1960).)

Johnston's Triangle Model

Taylor and his student Johnston (1960), presented in 1959 and

1960, respectively, a striking empirical generalization about the polar

plots of three-dimensione.l turbulent boundary-layer profiles. This

has become known as the triangle law, for reasons seen in Fig. 10.

V

.Direction of u

tan 9

EI)

Fig. 10 The "Triangle Law."
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Many pi.lar plots were found to be nearly .riangles, with base given

by the inviscid velocity vector U, one side aligned along the skin

friction direction, and th. third making an angle with U which appeared

in many cases to be simply related to the total angle through which the

inviscid streamlines had turned after a point in which the flow had

origirally been two-dimensional. The triangle law is thus a simple

statement of the dependence of v on u, without direct reference to .

It is a two-part statement. In Part I, which is clearly related to

Coles' wall-dominated region,

v = u

In Part II, the outer region,

v A(U - u)

The corner at which I and II join, was estimated originally by

Johnston to fall at u /v - 16, but much higher estimates c- 150) are

given by Hornung and Joubert (1963).

Coflict Between the Two Models

While certain sets of aata (for example, that of Kuethe et al.

(1949), which Coles first examined) seem to fit both models fairly

well, it can readily be seen that the two models are in fairly di-

rect conflict. For example, we can show that if Coles' wake-compo-

nent vectors are indeed parallel, and if Johnston's triangle rule is

rigorousiy applied, the wake-component magnitudes cannot be described

by an S-shaped function like w(§/6). Under the assumed conditions,

the angles a' and 0 in the polar plot (Fig. 11) are independent of

, Thus we get

sin a [ C
wake sin 0 wall wall

=Al
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\"wk(6)

Fig. 11 -- Hypothetical projected velocity profile.

If we assume that the wall law is logarithmic for > CI and define

W 2u ()/Ua(F), we find thatwake wake

W = 2 in ) n "-

J Curiously, this gives a fair fit to Hornung and Joubert's wake func-

tion data, as shown in their Fig. 7, with the reasonable choices of

6/i = 20 or 30! Coles has suggested that the generalized wall-wake

model is most likely to succeed in cases in which the divergence of

Reynolds stress is reasonably large compared with the lateral compo-

nent of inertial force, i.e., when 6T/ ;C > lY and he estimates
2Pu K 1 /(6T/6C) to be about 250 n 16. If the radius of curvature of

surface streamlines is much shorter than a few hundred boundary-

layer thicknesses, the outer part of the boundary layer accelerates

as a more or less inviscid, although rotational, flow. The latter

situation has been assumed by various authors to be the one for which

the triangle model will be most successful.

SUMMARY

One could go on to point out sample flows for which Johnston's

triangle rule cannot conceivably apply, but perhaps it is clear from

what has been already said that the prognosis for successful conputa-
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tions of three-dimenisional turbulent boundary layers is quite poor at

present. There are undoubtedly problems involving favorable pressure

gradients and gentle streamline curvatures in which success nearly

comparable to that available in two-dimensional problems is possible.

For eyample, Eichelbrenner's (1963) extensive computations for ring

wings, and those of Vaglio-Laurin (1959) for reentry bodies, use very

simple profiles and skin-friction laws. Turbulence complicates the

problem in a fundamental way, but it also probably suppresses anoma-

lous cross flows by its vigorous momentum exchanges, and qualitatively

can be expected to have a beneficial effect upon the prevention or de-

lay of separation.

It seems that detailed experimental work on three-dimensional

turbulent boundary layers is not only needed in its own right, but

may also somenow help us to sift hypotheses or generate fresh ideas

about the behavijr of two-dimensional flows. The problems of instru-

mentation for such studies are quite acute, and it is even more diffi-

cult to attain high Reynolds numbers and desirably thick boundary lay-

ers than in studies of two-dimensional flows.
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XV. SUGGESTIONS FOR FUTRRE WORK

These suggestions do not reflect a review in depth of all important

and outstanding problems of the field, but represent a collection of

items which appeared to be most intere.-ting and perhaps significant

within the scope of this study.

THEORETICAL TOPICS

1. Davey's "strong saddle points of attacment," and their place

in a complete flow field. These solutions exhibit a kind of "reverse

flow without separation,"' or "harmless separation." When situated on

a leading edge between two adjacent nodes of attachment, the solution

for the singular region implies a fascinating flow structure in which

the saddle point of the inviscid flow field is transformed into some-

thing like an unusually simply-described reattachment node in the sur-

face flow. Whether this really happens in nature is apparently an open

question, and a convincing theoretical clarification would probably be

heralded. as a tour de force in boundary-layer theory.

2. Further development of the three-dimensi:nalization of Smith

and Clutter's numerical procedure. What has been given above is only

a very preliminary sketch. Scme careful analysis might be worthwhile

of finite-difference procedures in the surfaces of constant z, of nu-

merical stability and error control, and some computations for compari-

son with the method of Raetz.

3. The method of characteristics for solving momentum-integral

equations. Mager has brushed off as impractical Timman's original sug-

gestion that the momentum-integral equations be integrated along their

real characteristics because the two characteristic directions include

too small an angle in the case of weak cross flows. However true this

may be, it does not seem proper to close the subject unless one wishes

from the start to abandon momentum-integral methods in problems with

large and interesting cross flows.

Even for the weak cross-flow case it seems to me that the method

of characteristics might be employed in the formulation of an approxi-

mate integration method which might be more correct and efficient than



that currently employed. Extending the analysis to cover the method

employing both unwelghted and weighted integral equations would be a

challenging investigation.

EXPERIMENTAL TOPICS

1. Mapping of skin friction field in laminar flow. Serious ef-

forts have been made, particularly in France and England, to observe

skin friction trajectories by oil and lampblack, or by dye emission

techniques. The results have been very helpful and, in some cases,

almost definitive. It would be a major achievement if these or other

techniques could be further perfected and employed to generate a de-

finitive portfolio of experimental skin-friction fields, including

in particular some which could provide quantitative checks on the-ry,

and some for pedagogical illustration of the richness of qualitative

possibilities.

2. Yawing of turbulent wakes. A further understanding of the

response of the wake component of turbulent shear flows to gradual and

to sudden yawing might contribute significantly to tte construction of

better models of the three-dimensional turbulent boundary layer. A

flat-plate wake might be studied as the wind tunnel downstream of the

plate executes a bend around an axis normal to the "plane" of tize

plate, This would provide an opportunity for the refinement of direc-

tion-sensing instrumentation in an environment that is less cramped

than the boundary layer.

3. Synoptic exploration of three-dimensional turbulent boundary

layers. Careful synoptic measurements of mean-velocity profiles, pres-

sure distributions and surface stresses need to be made on turbulent

boundary layers with widely varied inviscid streamline patterns. This

almost virgin territory for the experimentalist requires a major com-

mitment to refined experimental technique and to large-scale facili-

ties (to attain the n.cessary Reynolds number range). Special atten-

tion might be paid to cases involving inflected inviscid streamlines

and crossover profiles of secondary velocity, which have not as yet

been observed,,

S
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Appendix
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